29. Alternatywne formy regulatora PID

a) standardowa postać regulatora PID

$$G_r(s) = \frac{U(s)}{E(s)} = k_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$
(97)

b) szeregowa postać regulatora PID

$$G'_{r}(s) = \frac{U(s)}{E(s)} = k'_{p} \left(1 + \frac{1}{T'_{i}s}\right) (1 + T'_{d}s)$$
(98)

Rys. 100.

$$k_p = k'_p \frac{T'_i + T'_d}{T'_i}, \quad T_i = T'_i + T'_d, \quad T_d = \frac{T'_i T'_d}{T'_i + T'_d}$$
(99)

Przy założeniu $T_i \ge 4T_d$ możliwe jest wyznaczenie

$$k'_{p} = \frac{k_{p}}{2} \left(1 + \sqrt{1 - 4T_{d}/T_{i}} \right)$$

$$T'_{i} = \frac{T_{i}}{2} \left(1 + \sqrt{1 - 4T_{d}/T_{i}} \right)$$

$$T'_{d} = \frac{T_{d}}{2} \left(1 - \sqrt{1 - 4T_{d}/T_{i}} \right)$$
(100)

c) równoległa postać regulatora PID

$$G_r''(s) = \frac{U(s)}{E(s)} = k_p'' + \frac{k_i''}{s} + k_d''s$$
(101)

$$k_p'' = k_p, \quad k_i'' = \frac{k_p}{T_i}, \quad k_d'' = k_p T_d$$
 (102)

Wykład 9, str. 2

30. Regulator PID z ważoną wartością zadaną Reguła PID z wagami wartości zadanej

$$u(t) = k_p \left(e_p(t) + \frac{1}{T_i} \int_{0}^{t} e(\tau) d\tau + T_d \frac{de_d(t)}{dt} \right)$$
(103)

gdzie

$$e_p = by_0 - y, \quad e_d = cy_0 - y, \quad e = y_0 - y,$$
 (104)

31. Komercyjne sterowniki PID

a) postać standardowa

$$U(s) = k_p \left(bY_0 - Y + \frac{1}{T_i s} E + \frac{T_d s}{1 + T_d s/N} (cY_0 - Y) \right)$$
(106)

b) postać szeregowa

$$U(s) = k'_p \left(\left(b + \frac{1}{T'_i s} \right) \frac{1 + cT'_d s}{1 + T'_d s/N} Y_0 - \left(1 + \frac{1}{T'_i s} \right) \frac{1 + T'_d s}{1 + T'_d s/N} Y \right)$$
(107)

c) postać równoległa

$$U(s) = k_p''(bY_0 - Y) + \frac{k_i''}{s}E + \frac{k_d''s}{1 + k_d''s/(Nk_p'')}(cY_0 - Y)$$
(108)

 $T=T_d/N,$ typow
o $N\in<8,20>$

32. Zjawisko wind-up

Układ regulacji z nasyceniem sygnału sterującego

Wybrane metody ograniczania zjawiska *wind-up* a) wprowadzenie ograniczeń na zmiany sygnału zadanego

b) ograniczenie działania członu całkującego

Wejście bloku całkującego $\frac{1}{T_t}e_s + \frac{k_p}{T_i}e \Rightarrow e_s = -\frac{k_pT_t}{T_i}e$ Ponieważ $e_s = u - v \Rightarrow v = u_{lim} + \frac{k_pT_t}{T_i}e$ i $|v| > |u_{lim}|$, gdzie u_{lim} jest wartością nasycenia sygnału sterującego T_t jest stałą czasową śledzenia, zalecany dobór $T_t = \sqrt{T_iT_d}$

c) całkowanie warunkowe, gdy spełnione są przyjęte warunki

- wyłączenie całkowania, gdy sygnał uchybu jest duży
- wyłączenie całkowania, gdy sygnał sterujący jest nasycony
- wyłączenie całkowania, gdy sygnał sterujący jest nasycony i całkowanie powoduje jeszcze większe nasycenie
- zerowanie sygnału bloku całkującego, gdy uchyb jest duży

k_p	T_i	T_d
$\frac{T}{kT_o}$	∞	0
$\frac{0.9T}{kT_o}$	$3T_o$	0
$\frac{1,2T}{kT_o}$	$2T_o$	$0,5T_{o}$
	$\frac{k_p}{\frac{T}{kT_o}}$ $\frac{0.9T}{kT_o}$ $\frac{1.2T}{kT_o}$	$\begin{array}{c c} k_p & T_i \\ \hline \\ \hline \\ \frac{T}{kT_o} & \infty \\ \hline \\ \frac{0.9T}{kT_o} & 3T_o \\ \hline \\ \frac{1.2T}{kT_o} & 2T_o \end{array}$

Druga metoda

Rys. 109.

Typ regu- latora	k_p	T_i	T_d
Р	$0,5k_{kr}$	∞	0
PI	$0,\!45k_{kr}$	$\frac{1}{1,2}T_{osc}$	0
PID	$0,\!6k_{kr}$	$0,5T_{osc}$	$0,125T_{osc}$

Modyfikacja Passen
a $k_p=0,2k_{kr},\ T_i=0,33T_{osc},\ T_d=0,5T_{osc}$

34. Metoda CHR (Chien, Hrones, Reswick) doboru parametrów regulatora

Metoda umożliwia uzyskanie układów regulacji z lepszym tłumieniem lub szybszą odpowiedzią w porównaniu do reguł Zieglera-Nicholsa

Rys. 110.

Przereg.		0%			20%	
Typ regu- latora	k_p	T_i	T_d	k_p	T_i	T_d
Р	$0,\!3/a$	∞	0	0,7/a	∞	0
PI	$0,\!35/a$	1, 2T	0	$0,\!6/a$	T	0
PID	$0,\!6/a$	T	$0,5T_{o}$	$0,\!95/a$	1, 4T	$0,\!47T_{o}$

35. Metoda Cohena-Coona

Podstawowe założenie metody – minimalizacja wpływu zakłóceń

Typ regu- latora	k_p	T_i	T_d
Р	$\frac{1}{a}\left(1+\frac{0,35\tau}{1-\tau}\right)$	∞	0
PI	$\frac{0.9}{a}\left(1+\frac{0.92\tau}{1-\tau}\right)$	$\frac{3,3-3,0\tau}{1+1,2\tau}T_{o}$	0
PD	$\frac{1,24}{a}\left(1+\frac{0,13\tau}{1-\tau}\right)$	∞	$\frac{0,27-0,36\tau}{1-0,87\tau}T_o$
PID	$\frac{1,35}{a}\left(1+\frac{0,18\tau}{1-\tau}\right)$	$\frac{2,5-2,0\tau}{1-0,39\tau}T_{o}$	$\frac{0,37-0,37\tau}{1-0,81\tau}T_{o}$

Znormalizowane opóźnienie $au = \frac{T_o}{T_o+T}$