
VAL 3 REFERENCE MANUAL

Version 7

D28077104A – 23/08/2010
Master

VAL 3 © Stäubli 2010

© Stäubli 2010 – D28077104A VAL 32 / 191

Documentation addenda and errata can be found in the "readme.pdf" document delivered with
the controller's CdRom.

VAL 3 © Stäubli 2010 – D28077104A 3 / 191

Contents

CONTENTS

1 - INTRODUCTION.. 11

2 - VAL 3 LANGUAGE ELEMENTS... 15

2.1 APPLICATIONS... 17

2.1.1 Definition .. 17

2.1.2 Default content ... 17

2.1.3 Start/stop .. 17

2.1.4 Application parameters... 17

2.2 PROGRAMS... 19

2.2.1 Definition .. 19

2.2.2 Re-entry.. 19

2.2.3 Start() program ... 19

2.2.4 Stop() program ... 19

2.2.5 Program control instructions... 20

Comment // .. 20
call program .. 20
return .. 20
if control instruction .. 21
while control instruction .. 22
do ... until control instruction .. 22
for control instruction .. 23
switch control instruction .. 24

2.3 DATA.. 26

2.3.1 Definition .. 26

2.3.2 Simple types... 26

2.3.3 Structured types ... 26

2.3.4 Containers .. 27

2.4 DATA INITIALIZATION.. 27

2.4.1 Simple type data... 27

2.4.2 Structured type data ... 27

2.5 VARIABLES... 28

2.5.1 Definition .. 28

2.5.2 Variable scope.. 28

2.5.3 Accessing a variable value ... 28

2.5.4 Instructions applying to all variables... 29

num size(*) .. 29
bool isDefined(*) .. 29
bool insert(*) .. 30
bool delete(*) ... 31
num getData(string sDataName, *) ... 31

2.5.5 Instructions specific to array variables.. 33

void append(*) ... 33

© Stäubli 2010 – D28077104A VAL 34 / 191

num size(*, num nDimension) .. 33
void resize(*, num nDimension, num nSize) .. 33

2.5.6 Instructions specific to collection variables ... 34

string first(*) ... 34
string next(*) .. 34
string last(*) .. 34
string prev(*) .. 34

2.6 PROGRAM PARAMETERS.. 35

2.6.1 Parameter by element value ... 36

2.6.2 Parameter by element reference... 36

2.6.3 Parameter by array or collection reference ... 37

3 - SIMPLE TYPES ... 39

3.1 BOOL TYPE.. 41

3.1.1 Definition ... 41

3.1.2 Operators .. 41

3.2 NUM TYPE.. 42

3.2.1 Definition ... 42

3.2.2 Operators .. 43

3.2.3 Instructions.. 44

num sin(num nAngle) .. 44
num asin(num nValue) .. 44
num cos(num nAngle) ... 44
num acos(num nValue) ... 44
num tan(num nAngle) .. 44
num atan(num nValue) .. 45
num abs(num nValue) ... 45
num sqrt(num nValue) .. 45
num exp(num nValue) ... 45
num power(num nX, num nY) ... 45
num ln(num nValue) .. 46
num log(num nValue) .. 46
num roundUp(num nValue) .. 46
num roundDown(num nValue) ... 46
num round(num nValue) ... 46
num min(num nX, num nY) ... 48
num max(num nX, num nY) .. 48
num limit(num nValue, num nMin, num nMax) ... 48
num sel(bool bCondition, num nValue1, num nValue2) .. 48

3.3 BIT FIELD TYPE... 49

3.3.1 Definition ... 49

3.3.2 Operators .. 49

3.3.3 Instructions.. 49

num bNot(num nBitField) .. 49
num bAnd(num nBitField1, num nBitField2) ... 49
num bOr(num nBitField1, num nBitField2) .. 50
num bXor(num nBitField1, num nBitField2) .. 50
num toBinary(num nValue[], num nValueSize, string sDataFormat, num& nDataByte[]) 51
num fromBinary(num nDataByte[], num nDataSize,
string sDataFormat, num& nValue[]) ... 51

3.4 STRING TYPE .. 53

3.4.1 Definition ... 53

VAL 3 © Stäubli 2010 – D28077104A 5 / 191

Contents

3.4.2 Operators ... 53

3.4.3 Instructions ... 53

string toString(string sFormat, num nValue) .. 53
string toNum(string sString, num& nValue, bool& bReport) ... 54
string chr(num nCodePoint) .. 55
num asc(string sText, num nPosition) ... 56
string left(string sText, num nSize) ... 56
string right(string sText, num nSize) ... 56
string mid(string sText, num nSize, num nPosition) ... 56
string insert(string sText, string sInsertion, num nPosition) .. 57
string delete(string sText, num nSize, num nPosition) ... 57
string replace(string sText, string sReplacement, num nSize,
num nPosition) .. 57
num find(string sText1, string sText2) .. 57
num len(string sText) .. 57

3.5 DIO TYPE... 58

3.5.1 Definition .. 58

3.5.2 Operators ... 58

3.5.3 Instructions ... 59

void dioLink(dio& diVariable, dio diSource) ... 59
num dioGet(dio diArray[]) ... 59
num dioSet(dio diArray[], num nValue) ... 60
num ioStatus(dio diInputOutput) .. 60
num ioStatus(dio diInputOutput, string& sDescription,
string& sPhysicalPath) .. 61

3.6 AIO TYPE... 62

3.6.1 Definition .. 62

3.6.2 Instructions ... 62

void aioLink(aio& aiVariable, aio aiSource) .. 62
num aioGet(aio aiInput) .. 62
num aioSet(aio aiOutput, num nValue) ... 62
num ioStatus(aio aiInputOutput) .. 63
num ioStatus(aio diInputOutput, string& sDescription,
string& sPhysicalPath) .. 63

3.7 SIO TYPE ... 64

3.7.1 Definition .. 64

3.7.2 Operators ... 64

3.7.3 Instructions ... 65

void sioLink(sio& siVariable, sio siSource) .. 65
num clearBuffer(sio siVariable) .. 65
num sioGet(sio siInput, num& nData[]) ... 65
num sioSet(sio siOutput, num& nData[]) .. 65
num sioCtrl(sio siChannel, string nParameter, *value) .. 66

4 - USER INTERFACE.. 67

4.1 USER PAGE... 69

4.2 SCREEN TYPE .. 69

4.2.1 Selecting the user screen... 69

4.2.2 Writing to a user screen.. 69

4.2.3 Reading from a user screen ... 69

4.3 INSTRUCTIONS... 70

© Stäubli 2010 – D28077104A VAL 36 / 191

void userPage(), void userPage(screen scPage),
void userPage(bool bFixed) .. 70
void gotoxy(num nX, num nY),
void gotoxy(screen scPage, num nX, num nY) .. 70
void cls(), void cls(screen scPage) ... 70
void setTextMode(num nMode),
void setTextMode(screen scPage, num nMode) .. 70
num getDisplayLen(string sText) ... 71
void put(string sText), void put(screen scPage, string sText)
void put(num nValue), void put(screen scPage, num nValue),
void putln(string sText), void putln(screen scPage, string sText),
void putln(num nValue), void putln(screen scPage, num nValue), .. 72
void title(string sText), void title(screen scPage, string sText) ... 72
num get(string& sText),num get(screen scPage, string& sText),
num get(num& nValue),num get(screen scPage, num& nValue),
num get(),num get(screen scPage) .. 72
num getKey(), num getKey(screen scPage) .. 74
bool isKeyPressed(num nCode),
bool isKeyPressed(screen scPage, num nCode) ... 74
void popUpMsg(string sText) .. 74
bool logMsg(string sText) ... 75
string getProfile() ..75
num setProfile(string sUserLogin, string sUserPassword) ... 75
string getLanguage() .. 76
bool setLanguage(string sLanguage) ... 77
string getDate(string sFormat) .. 77

5 - TASKS... 79

5.1 DEFINITION .. 81

5.2 RESUMING AFTER A RUNTIME ERROR ... 81

5.3 VISIBILITY .. 81

5.4 SEQUENCING .. 82

5.5 SYNCHRONOUS TASKS... 83

5.6 OVERRUN .. 83

5.7 INPUTS / OUTPUTS REFRESH... 83

5.8 SYNCHRONIZATION ... 84

5.9 SHARING RESOURCES .. 85

5.10 INSTRUCTIONS ... 86

void taskSuspend(string sName) ... 86
void taskResume(string sName, num nSkip) ... 86
void taskKill(string sName) ... 87
void setMutex(bool& bMutex) ... 87
string help(num nErrorCode) ... 87
num taskStatus(string sName) ... 88
void taskCreate string sName, num nPriority, program(...) ... 89
void taskCreateSync string sName, num nPeriod, bool& bOverrun, program(...) 90
void wait(bool bCondition) ... 91
void delay(num nSeconds) .. 91
num clock() ... 92
bool watch(bool bCondition, num nSeconds) ... 92

6 - LIBRARIES.. 93

6.1 DEFINITION .. 95

VAL 3 © Stäubli 2010 – D28077104A 7 / 191

Contents

6.2 INTERFACE ... 95

6.3 INTERFACE IDENTIFIER .. 95

6.4 CONTENT .. 95

6.5 ENCRYPTION .. 95

6.6 LOADING AND UNLOADING.. 97

6.7 INSTRUCTIONS... 99

num identifier:libLoad(string sPath) .. 99
num identifier:libLoad(string sPath, string sPassword) .. 99
num identifier:libSave(), num libSave() .. 99
num libDelete(string sPath) .. 99
string identifier:libPath(), string libPath() .. 100
bool libList(string sPath, string& sContents[]) ... 100
bool identifier:libExist(string sSymbolName) .. 100

7 - USER TYPE... 101

7.1 DEFINITION ... 103

7.2 CREATION... 103

7.3 USE .. 103

8 - ROBOT CONTROL ... 105

8.1 INSTRUCTIONS... 107

void disablePower() ... 107
void enablePower() .. 107
bool isPowered() .. 107
bool isCalibrated() .. 108
num workingMode(), num workingMode(num& nStatus) ... 108
num esStatus() ... 109
bool safetyFault(string& sSignalName) .. 109
num ioBusStatus(string& sErrorDescription[]) ... 109
num getMonitorSpeed() ... 110
num setMonitorSpeed(num nSpeed) .. 110
string getVersion(string sComponent) ... 111

9 - ARM POSITIONS .. 113

9.1 INTRODUCTION .. 115

9.2 JOINT TYPE... 115

9.2.1 Definition .. 115

9.2.2 Operators ... 116

9.2.3 Instructions ... 116

joint abs(joint jPosition) ... 116
joint herej() .. 117
bool isInRange(joint jPosition) .. 117
void setLatch(dio diInput) (CS8C only) .. 118
bool getLatch(joint& jPosition) (CS8C only) ... 118

9.3 TRSF TYPE.. 119

9.3.1 Definition .. 119

9.3.2 Orientation .. 120

9.3.3 Operators ... 122

© Stäubli 2010 – D28077104A VAL 38 / 191

9.3.4 Instructions.. 122

num distance(trsf trPosition1, trsf trPosition2) .. 122
trsf interpolateL(trsf trStart, trsf trEnd, num nPosition) .. 123
trsf interpolateC(trsf trStart, trsf trIntermediate, trsf trEnd,
num nPosition) ... 124
trsf align(trsf trPosition, trsf Reference) .. 124

9.4 FRAME TYPE ... 125

9.4.1 Definition ... 125

9.4.2 Use.. 125

9.4.3 Operators .. 127

9.4.4 Instructions.. 127

num setFrame(point pOrigin, point pAxisOx, point pPlaneOxy,
frame& fResult) .. 127
trsf position(frame fFrame, frame fReference) ... 127
void link(frame fFrame, frame fReference) ... 127

9.5 TOOL TYPE .. 128

9.5.1 Definition ... 128

9.5.2 Use.. 128

9.5.3 Operators .. 129

9.5.4 Instructions.. 129

void open(tool tTool) ... 129
void close(tool tTool) ... 130
trsf position(tool tTool, tool tReference) ... 130
void link(tool tTool, tool tReference) ... 130

9.6 POINT TYPE ... 131

9.6.1 Definition ... 131

9.6.2 Operators .. 131

9.6.3 Instructions.. 132

num distance(point pPosition1, point pPosition2) ... 132
point compose(point pPosition, frame fReference,
trsf trTransformation) ... 132
point appro(point pPosition, trsf trTransformation) .. 133
point here(tool tTool, frame fReference) ... 133
point jointToPoint(tool tTool, frame fReference, joint jPosition) ... 133
bool pointToJoint(tool tTool, joint jInitial, point pPosition,
joint& jResult) ... 134
trsf position(point pPosition, frame fReference) ... 134
void link(point pPoint, frame fReference) .. 134

9.7 CONFIG TYPE .. 135

9.7.1 Introduction ... 135

9.7.2 Definition ... 135

9.7.3 Operators .. 136

9.7.4 Configuration (RX/TX arm).. 137

9.7.5 Configuration (RS/TS arm).. 140

9.7.6 Instructions.. 140

config config(joint jPosition) .. 140

10 - MOVEMENT CONTROL ... 141

10.1 TRAJECTORY CONTROL ... 143

10.1.1 Types of movement: point-to-point, straight line, circle... 143

VAL 3 © Stäubli 2010 – D28077104A 9 / 191

Contents

10.1.2 Movement sequencing: Blending ... 145

10.1.3 Movement resumption .. 147

10.1.4 Particularities of Cartesian movements (straight line, circle).................................... 148

10.2 MOVEMENT ANTICIPATION .. 152

10.2.1 Principle.. 152

10.2.2 Anticipation and blending ... 153

10.2.3 Synchronization .. 153

10.3 SPEED MONITORING ... 154

10.3.1 Principle.. 154

10.3.2 Simple settings ... 154

10.3.3 Advanced settings .. 155

10.3.4 Enveloppe error .. 155

10.4 REAL-TIME MOVEMENT CONTROL.. 155

10.5 MDESC TYPE .. 156

10.5.1 Definition .. 156

10.5.2 Operators ... 156

10.6 MOVEMENT INSTRUCTIONS... 157

num movej(joint jPosition, tool tTool, mdesc mDesc) ... 157
num movej(point pPosition, tool tTool, mdesc mDesc) .. 157
num movel(point pPosition, tool tTool, mdesc mDesc) .. 158
num movec(point pIntermediate, point pTarget, tool tTool,
mdesc mDesc) .. 159
void stopMove() .. 160
void resetMotion(), void resetMotion(joint jStartingPoint) ... 160
void restartMove() .. 161
void waitEndMove() ... 161
bool isEmpty() .. 162
bool isSettled() ... 162
void autoConnectMove(bool bActive), bool autoConnectMove() ... 162
num getSpeed(tool tTool) ... 163
joint getPositionErr() ... 163
void getJointForce(num& nForce) ... 163
num getMoveld() .. 163
num setMoveld(num nMoveld) ... 164

11 - OPTIONS... 165

11.1 COMPLIANT MOVEMENTS WITH FORCE CONTROL.. 167

11.1.1 Principle.. 167

11.1.2 Programming.. 167

11.1.3 Force control .. 167

11.1.4 Limitations .. 168

11.1.5 Instructions ... 168

num movejf(joint jPosition, tool tTool, mdesc mDesc, num nForce) .. 168
num movelf(point pPosition, tool tTool, mdesc mDesc, num nForce) .. 169
bool isCompliant() .. 169

11.2 ALTER: REAL TIME CONTROL ON A PATH... 170

11.2.1 Principle.. 170

11.2.2 Programming.. 170

11.2.3 Constraints ... 170

© Stäubli 2010 – D28077104A VAL 310 / 191

11.2.4 Safety .. 171

11.2.5 Limitations ... 171

11.2.6 Instructions.. 171

num alterMovej(joint jPosition, tool tTool, mdesc mDesc) .. 171
num alterMovej(point pPosition, tool tTool, mdesc mDesc) ... 171
num alterMovel(point pPosition, tool tTool, mdesc mDesc) ... 172
num alterMovec(point pIntermediate, point pTarget, tool tTool,
mdesc mDesc) ... 172
num alterBegin(frame fAlterReference, mdesc mMaxVelocity) .. 173
num alterBegin(tool tAlterReference, mdesc mMaxVelocity) ... 173
num alterEnd() ..174
num alter(trsf trAlteration) ... 174
num alterStopTime() .. 175

11.3 OEM LICENCE CONTROL... 176

11.3.1 Principles... 176

11.3.2 Instructions.. 176

string getLicence(string sOemLicenceName, string sOemPassword) ... 176

11.4 ABSOLUTE ROBOT... 177

11.4.1 Principle .. 177

11.4.2 Operation .. 177

11.4.3 Limitations ... 177

11.4.4 Instructions.. 178

void getDH (num& theta[], num& d[], num& a[], num& alpha[],
num& beta[]) .. 178
void getDefaultDH(num& theta[], num& d[], num& a[], num& alpha[],
num& beta[]) .. 178
bool setDH(num& theta[], num& d[], num& a[],num& b[], num& alpha[], num& beta[]) 178

11.5 CONTINUOUS AXIS... 179

11.5.1 Principle .. 179

11.5.2 Instructions.. 179

joint resetTurn(joint jReference) .. 179

12 - APPENDIX .. 181

12.1 RUNTIME ERROR CODES .. 183

12.2 CONTROL PANEL KEYBOARD KEY CODES.. 184

VAL 3 © Stäubli 2010 – D28077104A 11 / 191

Chapter 1 - Introduction

CHAPTER 1

INTRODUCTION

© Stäubli 2010 – D28077104A VAL 312 / 191

VAL 3 © Stäubli 2010 – D28077104A 13 / 191

Chapter 1 - Introduction

VAL 3 is a high-level programming language designed to control Stäubli robots in all kinds of applications.

VAL 3 language combines the basic features of a standard real-time high-level computer language with
functionalities that are specific to the control of an industrial robot cell:

• robot control tools
• geometrical modelling tools
• input/output control tools

This reference manual explains the essential concepts of robot programming and describes the VAL 3
instructions which fall into the following categories:

• Language elements
• Simple types
• User interface
• Tasks
• Libraries
• User types
• Robot control
• Arm position
• Movement control
• Screen type: for MCP screen display

Each instruction, together with its syntax, is listed in the table of contents for quick reference purposes.

© Stäubli 2010 – D28077104A VAL 314 / 191

VAL 3 © Stäubli 2010 – D28077104A 15 / 191

Chapter 2 - VAL 3 language elements

0

CHAPTER 2

VAL 3 LANGUAGE ELEMENTS

© Stäubli 2010 – D28077104A VAL 316 / 191

*

VAL 3 © Stäubli 2010 – D28077104A 17 / 191

Chapter 2 - VAL 3 language elements

The VAL 3 programming language consists of applications. A VAL 3 application contains both programs and
data. A VAL 3 application can also refer to other applications, used either as libraries, or as user type definitions.

2.1. APPLICATIONS

2.1.1. DEFINITION

A VAL 3 application is a self-contained software package designed for controlling robots and inputs/outputs
associated with a controller.
A VAL 3 application comprises the following elements:

- a set of programs: the VAL 3 instructions to be executed
- a set of global data: the data shared by all programs in the application
- a set of libraries: external applications used to share programs and/or data
- a set of user types: external applications used as templates to define structured data in the application

When an application is running, it also contains:
- a set of tasks: the programs being executed simultaneously

2.1.2. DEFAULT CONTENT

A new VAL 3 application is created by copying the content of a predefined, template application. New user
specific templates can be created. They simply consist in a standard VAL 3 application placed in a dedicated
folder on the controller.
A VAL 3 application can be started only if it contains both a start() and a stop() program. Without start() and
stop() programs, a VAL 3 application can only be used as a library or a user type definition. It is possible to
define applications that contain only data, or only programs.

2.1.3. START/STOP

The starting of a VAL 3 application is managed by the controller. It can be either a user request from the MCP
user interface, or automatic as part of the boot process.
Only one VAL 3 application can be started at one time. This application can however use simultaneously many
other applications (as libraries), and start many different execution tasks.
When a VAL 3 application is ran, its start() program is executed.
A VAL 3 application stops automatically when its last task is completed: the stop() program is then executed. All
the tasks created by libraries, if any remain, are deleted in the reverse order to that in which they were created.
If a VAL 3 application is stopped via the MCP user interface, the start task, if it still exists, is immediately
destroyed. The stop() program is run next, and then any remaining application tasks are deleted in the reverse
order to that in which they were created.

2.1.4. APPLICATION PARAMETERS

The following parameters can be used to configure a VAL 3 application:
- unit of length
- amount of stack memory

These parameters cannot be accessed via a VAL 3 instruction and can only be changed via the MCP user
interface or using VAL 3 Studio in Stäubli Robotics Suite.

© Stäubli 2010 – D28077104A VAL 318 / 191

2.1.4.1. UNIT OF LENGTH

In VAL 3 applications, the unit of length is either millimeter or inch. It is used by the VAL 3 geometrical data
types: frame, point, joint (for linear axes), transformation, tool, and trajectory blending.
The unit of length of an application is defined when an application is created, and it cannot be subsequently
changed.

2.1.4.2. AMOUNT OF STACK MEMORY

Some memory is needed for each VAL 3 task to store:
- The call stack (the list of program calls being executed in this task)
- The parameters for each program of the call stack
- The local variables for each program of the call stack

By default, each task has 5000 bytes for stack memory. There is usually no need to change that parameter.
This level may not be sufficient for applications containing large arrays of local variables or recursive algorithms:
in this case, it must be increased via the MCP user interface or using VAL 3 Studio in Stäubli Robotics Suite,
or the application must be optimized, by reducing the number of programs in the call stack, or by using global
variables in place of local variables.

VAL 3 © Stäubli 2010 – D28077104A 19 / 191

Chapter 2 - VAL 3 language elements

2.2. PROGRAMS

2.2.1. DEFINITION

A program is a sequence of VAL 3 instructions to be executed.
A program consists of the following elements:

- The sequence of instructions: the VAL 3 instructions to be executed
- A set of local variables: the internal program data
- A set of parameters: the data supplied to the program when it is called

Programs are used to group sequences of instructions that can be executed at various points in an application. In
addition to saving programming time, they also simplify the structure of the applications, facilitate programming
and maintenance and improve readability.
The number of instructions in a program is limited only by the amount of memory available in the system.
The number of local variables and parameters is limited only by the size of the stack memory for the application
(see chapter 2.1.4.2).

2.2.2. RE-ENTRY

The programs are re-entrant; this means that a program can call itself recursively (call instruction), or it can be
called simultaneously by several tasks. Each call of a program uses its own unique local variables and
parameters. No interaction is possible between two different calls of the same program.

2.2.3. START() PROGRAM

The start() program is the program called when the VAL 3 application is ran. It cannot have any parameters.
Typically, this program includes all the operations required to execute the application: initialization of the global
variables and the outputs, creating the application tasks, etc.
The application does not terminate at the end of the start() program, as long as other application tasks are still
running.
The start() program can be called from within a program (call instruction) in the same way as any other program.

2.2.4. STOP() PROGRAM

The stop() program is the program called when the VAL 3 application stops. It cannot have any parameters.
Typically, this program includes all the operations required to stop the application correctly: resetting the outputs
and stopping the application tasks according to an appropriate sequence, etc.

The stop() program can be called from within a program (call instruction) in the same way as any other program,
but calling the stop() program does not stop the application.

© Stäubli 2010 – D28077104A VAL 320 / 191

2.2.5. PROGRAM CONTROL INSTRUCTIONS

Comment //

Syntax
// <String>

Function
A line starting with « // » is not executed and the execution resumes on the next line. You cannot use « // » in the
middle of a line, they must be the first characters on the line.

Example
// This is an example of a comment

call program

Syntax
call program([parameter1][,parameter2])

Function
The call instruction executes a user-defined program. The number and the type of the expressions after the
program name must match the interface of the program. The expressions specified as parameters are first
executed in the order they are specified. The local variables are then initialized, and the execution of the program
starts with its begin instruction.

The execution of a call is completed when the program executes a return or an end instruction.

Example
// Calls the pick() and place() programs for i,j between 1 and 10
for i = 1 to 10
 for j = 1 to 10
 call pick(pPallet1[i,j])
 call place(pPallet2[i,j])
 endFor
endFor

return

Syntax
return

Function
The return instruction terminates the execution of the current program immediately. If this program was called by
a call, execution resumes after the call in the calling program. Otherwise (if the program is the start() program or
the starting point of a task), the current task is completed. The return instruction has exactly the same effect as
the end instruction at the end of the program.

A program is often easier to understand and maintain when its execution always ends with the end instruction.
The use of a return instruction in the middle of a program is then not desirable.

VAL 3 © Stäubli 2010 – D28077104A 21 / 191

Chapter 2 - VAL 3 language elements

if control instruction

Syntax
if <bool bCondition>

<instructions>
[elseIf <bool bAlternateCondition1>

<instructions>]
../..
[elseIf <bool bAlternateConditionN>

<instructions>]
[else

<instructions>]
endIf

Function
The if...elseIf...else...endIf sequence evaluates successively the Boolean expressions marked with the if or
elseIf keywords, until one expression is true. The instructions following the Boolean expression are then
executed, up to the next elseIf, else or endIf keyword. The program finally resumes after the endIf keyword.
If all Boolean expressions marked with if or elseIf are false, the instructions between the else and endIf
keywords are executed (if the else keyword is present). The program then resumes after the endIf keyword.

There is no restriction on the number of elseIf expressions within an if...endIf sequence.

The if...elseIf...else...endIf sequence can be replaced with the switch...case...default...endSwitch sequence
when the different possible values of a single expression are tested.

Example
This program converts a day written in a string (sDay) into a num (nDay).

put("Enter a day: ")
get(sDay)
if sDay=="Monday"
 nDay=1
elseIf sDay=="Tuesday"
 nDay=2
elseIf sDay=="Wednesday"
 nDay=3
elseIf sDay=="Thursday"
 nDay=4
elseIf sDay=="Friday"
 nDay=5
else
 // Weekend !
 nDay=0
endIf

See also
switch control instruction

© Stäubli 2010 – D28077104A VAL 322 / 191

while control instruction

Syntax
while <bool bCondition>
<instructions>

endWhile

Function
The instructions between while and endWhile are executed when the Boolean bCondition expression is (true).
If the Boolean bCondition expression is not true at the first evaluation, the instructions between while and
endWhile are not executed.

Parameter

Example
// This simple program makes a signal flash as long as the robot is moving
diLamp = false
while (isSettled()==false)
//Inverses the value of the diLamp: true false
 diLamp = !diLamp
//Waits ½ s
 delay(0.5)
endWhile
diLamp = false

do ... until control instruction

Syntax
do
<instructions>

until <bool bCondition>

Function
The instructions between do and until are executed until the Boolean bCondition expression is (true).

The instructions between do and until are executed once if the Boolean bCondition expression is true during its
first evaluation.

Parameter

Example
// This program loops until the Enter key is pressed
do
// Waits for a key to be pressed
 nKey = get()
// Tests the Enter key code
until (nKey == 270)

bool bCondition Boolean expression to be evaluated

bool bCondition Boolean expression to be evaluated

VAL 3 © Stäubli 2010 – D28077104A 23 / 191

Chapter 2 - VAL 3 language elements

for control instruction

Syntax
for <num nCounter> = <num nBeginning> to <num nEnd> [step <num nStep>]

<instructions>
endFor

Function
The instructions between for and endFor are executed until the nCounter exceeds the specified nEnd value.

The nCounter is initialized by the nBeginning value. If nBeginning exceeds nEnd, the instructions between for
and endFor are not executed. At each iteration, the nCounter is incremented by the nStep value, and the
instructions between for and endFor are repeated if the nCounter does not exceed nEnd.
If nStep is positive, the for loop stops when nCounter is greater than nEnd. If nStep is negative, the for loop
stops when nCounter is less than nEnd.

Parameter

Example
// This program rotates axis 1 from -90° to +90° in -10° steps
for nPos = 90 to -90 step -10
 jDest.j1 = nPos
 movej(jDest, flange, mNomSpeed)
 waitEndMove()
endFor

num nCounter num type variable used as a counter

num nBeginning numerical expression used to initialize the counter

num nEnd numerical expression used for the loop end test

[num nStep] numerical expression used to increment the counter

© Stäubli 2010 – D28077104A VAL 324 / 191

switch control instruction

Syntax
switch <expression>
case <value1> [, <value2>]
<instructions1-2>
break

[case <value3> [, <value4>]
<instructions3-4>
break]

[default
<Default Instructions>
break]

endSwitch

Function
The switch...case...default...endSwitch sequence evaluates successively the expressions marked with the
case keyword until one expression is equal to the initial expression after the switch keyword.
The instructions following the expression are then executed, up to the break keyword. The program finally
resumes after the endSwitch keyword.
If no case expression is equal to the initial switch expression, the instructions between the default and
endSwitch keywords are executed (if the default keyword is present).

There is no restriction on the number of case expressions within an switch...endSwitch sequence. The
expressions after the case keyword must have the same type as the expression after the switch keyword.

The switch...case...default...endSwitch sequence is very similar to the if...elseIf...else...endIf sequence.
It accepts not only Boolean expressions, but any type that supports the standard "is equal to" "==" operator.

Example
This program reads a num (nMenu) corresponding to a keystroke and modifies a string s in consequence.

nMenu = get()
switch nMenu
 case 271
 s = "Menu 1"
 break
 case 272
 s = "Menu 2"
 break
 case 273, 274, 275, 276, 277, 278
s = "Menu 3 to 8"
 break
 default
 s = "this key is not a menu key"
 break
endSwitch

This program converts a day written in a string (sDay) into a num (nDay).
put("Enter a day: ")
 get(sDay)
 switch sDay
 case "Monday"
 nDay=1
 break
 case "Tuesday"
 nDay=2
 break
 case "Wednesday"

VAL 3 © Stäubli 2010 – D28077104A 25 / 191

Chapter 2 - VAL 3 language elements

 nDay=3
 break
 case "Thursday"
 nDay=4
 break
 case "Friday"
 nDay=5
 break
 default
 // Not a week day !
 nDay=0
 break
 endSwitch

© Stäubli 2010 – D28077104A VAL 326 / 191

2.3. DATA

2.3.1. DEFINITION

A data is a set of values to be used as parameter or result of VAL 3 instructions.
A data consists of the following elements:

- a set of values
- a type, that defines the possible values and allowed operations on the data. Boolean, Numeric and String

are the most simple data types
- a container, that defines the way the values are stored in the data. Element, Array, Collection are the

possible data containers in VAL 3

2.3.2. SIMPLE TYPES

The VAL 3 language supports the following simple types:
- bool type: for Boolean values (true/false)
- num type: for numeric values (integer or floating point numbers)
- string type: for character strings (Unicode characters)
- dio type: for digital inputs/outputs
- aio type: for numeric inputs/outputs (analog or digital)
- sio type: for serial ports inputs/outputs and ethernet sockets
- screen type: for MCP screen display and keyboard access

In the documentation, the type of the variable is indicated with the initial lower case letters in its name:

- bVariable is a variable of type bool
- nVariable is a variable of type num
- sVariable is a variable of type string
- diVariable is a variable of type dio
- aiVariable is a variable of type aio
- siVariable is a variable of type sio
- scVariable is a variable of type screen

2.3.3. STRUCTURED TYPES

A structured type combines several simpler types into a new, higher level type. Each sub-type is given a name,
and can be accessed individually as a field of the structure. Adequate types in an application organize the data in
a way that makes computations and program evolutions easier.
The VAL 3 language supports the following structured types made of simple types:

- trsf type: for Cartesian geometrical transformations
- frame type: for Cartesian geometrical frames
- tool type: for robot mounted tools
- point type: for the Cartesian positions of a tool
- joint type: for robot axis positions
- config type: for robot configurations
- mdesc type: for robot movement parameters

The VAL 3 language supports also user types, that combines VAL 3 simple, structured, or even other user types
into a new type. A user type can be used in an application exactly as a standard type.

In the documentation, the type of the variable is indicated with the initial lower case letters in its name:

- trVariable is a variable of type trsf
- fVariable is a variable of type frame
- tVariable is a variable of type tool
- pVariable is a variable of type point
- jVariable is a variable of type joint
- cVariable is a variable of type config

VAL 3 © Stäubli 2010 – D28077104A 27 / 191

Chapter 2 - VAL 3 language elements

- mVariable is a variable of type mdesc

2.3.4. CONTAINERS

The data container defines the way the values are stored in the data:

• An 'element' container simply consists in a single value. True (Boolean), 0 (numeric), 'text' (string), have an
element container.

• An 'array' container consists in a set of values identified by 1, 2 or 3 integer indices. The starting index in
arrays is always 0.

• A 'collection' container consists in a set of values identified by a string key. Any non-empty string can be
used as value identifier.

A one dimension array container with a single value (index 0) is considered as an element container.

In the documentation, when needed, the container of the variable is identified with the name of the variable:

- s1dArray is a one dimension array of type string
- s2dArray is a two dimension array of type string
- s3dArray is a three dimension array of type string
- sColl is a collection of type string

Some instructions (to handle arrays or collections) do not care of the type of the data. In the documentation, the
type is then replaced with a star: ’*’.

2.4. DATA INITIALIZATION

2.4.1. SIMPLE TYPE DATA

The precise syntax for the initialisation of a simple type data is specified in the chapter describing each simple
type. An array or a collection must be initialized element by element. The initialization value is false for a bool, 0
for a num and "" (empty string) for a string.

Example
In this example, bBool is a Boolean, nPi a numeric and sString a string variable.

bBool = true
nPi = 3.141592653
sString = "this is a string"

2.4.2. STRUCTURED TYPE DATA

The value of a structured type data is defined by the sequence of its fields values between brackets, separated
with commas. Empty fields values are replaced with 0. The sequence order is specified in the chapter describing
each structured type. The value of a structure may include values of other nested sub-structures. An array or a
collection of a structured type must be initialized element by element.

Example
The point type is made of a trsf and a config type. A point variable may be initialized as shown:

pPosition = {{100, -50, 200, 0, 0, 0}, {sfree, efree, wfree}}

The transformation of the point could also be initialized with:

pPosition.trsf = {100, -50, 200,,,}

© Stäubli 2010 – D28077104A VAL 328 / 191

2.5. VARIABLES

2.5.1. DEFINITION

A variable is a data referenced by its name in an application or a program.
A variable is identified by:

- a name: a character string
- a scope: where the variable can be accessed (within a single program, shared by programs within an

application, or shared between applications)
- a set of values
- a data type (simple or structured type)
- a data container (element, array or collection)

A variable name is a string of 1 to 15 characters selected from "a..zA..Z0..9_", and starting with a letter.

2.5.2. VARIABLE SCOPE

The variable scope can be:
• global: all programs in the application can use the variable, or
• local: the variable can only be accessed by the program in which it is declared

When a global variable and a local variable have the same name, the program in which the local variable is
declared will use the local variable and will be unable to access the global variable.
When an application is used as a library, each global variable can be declared either as public or private. A public
variable can be accessed by the applications that use the library, private variables can only be accessed within
the library.

2.5.3. ACCESSING A VARIABLE VALUE

The access to the value of a variable depends on its container:
- the value of an element container is accessed with the name of the variable (without square brackets):

nVariable.
- a value in an array is accessed with its numerical indices between square brackets after the name of the

variable: n1dArray[nIndex], n2dArray[nIndex1, nIndex2], n3dArray[nIndex1, nIndex2, nIndex3].
- a value of a collection is accessed with its string key between square brackets after the name of the

variable: nCollection[sKey]
A one dimension array container with a single value (index 0) is considered as an element container. Its value
can be accessed without brackets: n1dArray is equivalent to n1dArray[0].
The numerical indices used to access a value in an array are rounded to the nearest integer value:
n2dArray[5.01, 6.99] is equivalent to n2dArray[5, 7]
The index used to access a value in an array ranges between 0 and the size of the dimension minus one.

The fields of a structured type variable can be accessed using a ’.’ followed by the field name: pPoint.trsf.x refers
to the value of the 'x' field of the 'trsf' field of the point data pPoint.

Example
Initialisation of simple type variables with different containers:

nPi = 3.141592653
sMonth[0] = "January"
sProductName["D 243 064 40 A"] = "VAL 3 CdRom"

VAL 3 © Stäubli 2010 – D28077104A 29 / 191

Chapter 2 - VAL 3 language elements

2.5.4. INSTRUCTIONS APPLYING TO ALL VARIABLES

num size(*)

Function
This instruction returns the number of values that are accessible with the variable:

- the size of an element container variable is 1.
- the size of a one dimension array is the number of elements in the array.
- the size of a collection is the number of elements in the collection.

For two dimensions and three dimensions arrays, the size instruction requires a second parameter to specify the
dimension to size. For a one dimension array, size(s1dArray) is equivalent to size(s1dArray, 1).

The size of a one dimension array parameter passed by array reference depends on the index specified when
calling the program. Only the part of the array starting from the specified index is accessible within the subprogram:
size(s1dArray[nIndex]) = size(s1dArray) - nIndex.

Parameter

Example
The variable to size must be specified without square brackets:

// Ok
nNbElements=size(sCollection)
// compilation error: unexpected key
nNbElements=size(sCollection[sKey])

For a one dimension array, an index specifies the start of a sub-array: size(s1dArray[nIndex]) is the size of the sub-
array starting with index nIndex.

bool isDefined(*)

Function
This instruction returns true if the specified element is defined in an array or a collection, false if the element is
not defined.

It can be used to test if an element is defined in a collection; it can also be used to test if a library implements a
variable of its interface or not. This is helpful to handle the evolution of a library's interface, and adapt its use
depending if it is a newer or older version of the interface.

Example
This example adds a new article key in a collection.

// Ask for a new reference name
put("New reference ?")
get(sReference)
if isDefined(sReferenceColl[sReference])==true
 putln("Error: reference already defined")
else
// Add new article in the collection
 insert(sReferenceColl[sReference])
endIf

This example tests the interface of a library.

// Load part library

variable variable of any type

© Stäubli 2010 – D28077104A VAL 330 / 191

nLoadCode = part:libLoad(sPartPath)
// part:sVersion was not defined in the first version of the library
// Test if this library defines it
if (nLoadCode==0) or (nLoadCode==11)
 if (isDefined(part:sVersion)==false)
 // initial version
 sLibVersion = "v1.0"
 else
 sLibVersion = part:sVersion
 endIf
endIf

bool insert(*)

Function
This instruction creates a new value of the variable's type, and stores it in the variable container. The new value
is initialized with the default value of the type. The size of the variable is increased by one.

For a one dimension array, the new value is inserted at the specified index position. The index position may be
equal to the size of the array: the insertion is then made at the end of the array. "insert(s1dArray[size(s1dArray)])"
is equivalent to “append(s1dArray)*?.

For collections, insert is accepted only if the key is not already used in the collection. The new value is associated
with the specified key, and the function returns true. The instruction has no effect and returns false if the key was
already in use. The instruction isDefined() can be used to check whether a key is used in a collection or not.

This instruction is not supported for two and three dimensions arrays (use the resize() instruction instead) and for
local array variables. The size of a variable is limited to 9999 values. A runtime error is generated when the size
of the variable exceeds this limit.

The insert instruction allocates system memory. The performance of memory allocation is not guaranteed.
Therefore an extensive use of insert() should be avoided in VAL 3 applications where performance is an issue.

Example
This example adds a new article in a list.

// Ask for a new article name
put("New article ?")
get(sArticleName)
putln("")
// Ask for the position in the list
put("Position ? ")
get(nIndex)
if (nIndex<0) or (nIndex>size(sArticleList))
 putln("Error: invalid position")
else
 // Add new article in the list
 insert(sArticleList[nIndex])
 sArticleList[nIndex] = sArticleName
endIf

This example adds a new article key in a collection.

// Ask for a new article name

put("New article ?")
get(sArticleName)
if isDefined(sArticleColl[sArticleName])==true
 putln("Error: reference already defined")
else
 // Add new article in the collection
 insert(sArticleColl[sArticleName])

VAL 3 © Stäubli 2010 – D28077104A 31 / 191

Chapter 2 - VAL 3 language elements

endIf

bool delete(*)

Function
This instruction deletes the specified value from the container of the variable. The size of the variable is decreased
by one.

A runtime error is generated if the specified index or key is out of range. The instruction isDefined() can be used
to check whether a key is used in a collection or not.

The size of a collection can be null, but an array variable must always have at least one element. A runtime error
is generated when trying to delete the last element of an array.

This instruction is not supported for two and three dimensions arrays (use the resize() instruction instead) and for
local array variables.

The delete() instruction frees system memory. The performance of memory garbage collection is not guaranteed.
Therefore an extensive use of delete() should be avoided in VAL 3 applications where performance is an issue.

Example
This example deletes an article in a collection.

// Ask for the article to delete
put("Article to remove ?")
get(sArticleName)
if isDefined(sArticleColl[sArticleName])==true
 // remove the article from the collection
 delete(sArticleColl[sArticleName])
else
 putln("Error: article not defined")
endIf

num getData(string sDataName, *)

Function
This instruction copies the value of a data, specified by its name sDataName, into the specified variable. If both
the data and the variable are one dimension arrays, the getData() instruction copies all array's entries until the
end of one of the array is reached. The instruction returns the number of copied entries in the variable.

The data name must have the following format: "library:name[index]", where "library:" and "[index]" are optional:

- "name" is the name of the data
- "library" is the name of the library identifier in which the data is defined
- "index" is the numerical value of the index to access when the data is a one dimension array

The instruction returns an error code when the data copy could not be performed:

Returned value Description

n > 0 The variable was successfully updated with n entries copied

-1 The data does not exists

-2 The library identifier does not exist

-3 The index is out of range

-4 The data's type does not match the variable's type

© Stäubli 2010 – D28077104A VAL 332 / 191

Example
This program merges 2 arrays of points pApproach[] and pTrajectory[] from a library into a single local array
pPath[].

// Copy approach points in path
i = getData("Part:pApproach", pPath)
if(i > 0)
 nPoints = i
 // Append trajectory points in path
 i = getData("Part:pTrajectory", pPath[nPoints])
 if(i >0)
 nPoints=nPoints+i
 endIf
endIf

VAL 3 © Stäubli 2010 – D28077104A 33 / 191

Chapter 2 - VAL 3 language elements

2.5.5. INSTRUCTIONS SPECIFIC TO ARRAY VARIABLES

void append(*)

Function
This instruction creates a new value of the variable's type, and stores it at the end of the one dimension array
variable. The new value is initialized with the default value of the type. The size of the variable is increased by one.

This instruction is not supported for two and three dimensions arrays, and for local array variables. The size of a
variable is limited to 9999 values. A runtime error is generated when the size of the variable exceeds this limit.

The append instruction allocates system memory. The performance of memory allocation is not guaranteed.
Therefore an extensive use of append() should be avoided in VAL 3 applications where performance is an issue.

Example
This example appends a new article in a list.

// Ask for a new article name
put("New article ?")
get(sArticle)
putln("")
append(sArticleList)
sArticleList[size(sArticleList)-1] = sArticle

num size(*, num nDimension)

Function
This instruction returns the size of the specified dimension in the array. If nDimension exceeds the array's
dimensions, the function returns 0. For a one dimension array, size(s1dArray, 1) is equivalent to size(s1dArray).

Example
The array variable must be specified without square brackets:

//Ok
nNbElements=size(s3dArray,3)
// Compilation error: unexpected indices
nNbElements=size(s3dArray[1,2,3],3)

void resize(*, num nDimension, num nSize)

Function
This instruction creates or deletes values in an array so that the size of the specified dimension matches the nSize
value. The creation or deletion of values is done at the end of the array. The new values, if any, are initialized with
the default value of the type.

This instruction is not supported for local array variables. The size of a variable is limited to 9999 values. A runtime
error is generated when the size of the variable exceeds this limit.

The resize() instruction allocates or frees system memory. The performance of memory handling is not
guaranteed. Therefore an extensive use of resize() should be avoided in VAL 3 applications where performance
is an issue.

Example

The variable must be specified without index. The next instruction modifies s2dArray so that its second dimension
is 5.

resize(s2dArray, 2, 5)

© Stäubli 2010 – D28077104A VAL 334 / 191

2.5.6. INSTRUCTIONS SPECIFIC TO COLLECTION VARIABLES

string first(*)

Function
This instruction returns the first key of a collection, sorted by key alphabetic order. If the collection is empty, the
instruction returns an empty string "".

string next(*)

Function
This instruction returns the next key of a collection, sorted by key alphabetic order. If the specified key is the last
key of the collection, the instruction returns an empty string "".

Example
This example prints on the user page all elements of a collection by key alphabetic order:

sKey = first(sCollection)
while sKey != ""
 sKey = next(sCollection[sKey])
 putln(sKey)
endWhile

string last(*)

Function
This instruction returns the last key of a collection, sorted by key alphabetic order. If the collection is empty, the
instruction returns an empty string "".

string prev(*)

Function
This instruction returns the previous key of a collection, sorted by key alphabetic order. If the specified key is the
first key of the collection, the instruction returns an empty string "".

Example
This example prints on the user page all elements of a collection by key reverse alphabetic order:

sKey = last(sCollection)
while sKey != ""
 sKey = prev(sCollection[sKey])
 putln(sKey)
endWhile

VAL 3 © Stäubli 2010 – D28077104A 35 / 191

Chapter 2 - VAL 3 language elements

2.6. PROGRAM PARAMETERS

Sub-program parameters are data that are transmitted from a calling program to a sub-program, with the call
instruction. In the sub-program, parameters are like local variables that are initialized automatically when the sub-
program is started.

There are different ways to pass a variable to a sub-program:

- you may want to pass only one value (one element) of the variable, or the container (array or collection)
of the variable as a whole.

- you may allow the sub-program to modify the value of the variable (passing the variable "by reference"),
or just pass a copy of the value to the sub-program, making sure the variable remains unchanged
(passing a variable "by value").

A variable can be passed as parameter:

- by element value.
- by element reference.
- by array or collection reference.

Passing a container (array or collection) by value is not allowed.

A reference is marked with the ’&’ symbol after the data type in the program interface definition:

num& nData is a num parameter passed by element reference.

num& n1dArray[] is a num parameter passed by array reference (one dimension array).

num& n2dArray[,] is a num parameter passed by array reference (two dimensions array).

num& n3dArray[,,] is a num parameter passed by array reference (three dimensions array).

num& nCollection[""] is a num parameter passed by collection reference.

In the documentation, the same notation is used for instruction description:

bool pointToJoint(tool tTool, joint jInitial, point pPosition, joint& jResult) is an instruction returning a boolean
value, taking a tool, a joint, and a point data passed by element value, and a joint passed by element reference.

num fromBinary(num& nDataByte[], num nDataSize, string sDataFormat, num& nValue[]) is an instruction
returning a numerical value, taking a one dimension array as first parameter (passed by reference), a numerical
and a string data passed by element value, and a one dimension array as last parameter (passed by reference).

© Stäubli 2010 – D28077104A VAL 336 / 191

2.6.1. PARAMETER BY ELEMENT VALUE

When a parameter is defined by element value, the system creates a local variable and initializes it with the value
of the VAL 3 instruction supplied by the calling program. If the supplied instruction is a variable, the parameter is
initialized with a copy of the value of the variable. All changes made to the value of the parameter in the sub-
program have no impact on the value of the variable in the calling program.

Example
Let sendMessage(string sMessage) be a program with a single parameter passed by element value.

sendMessage() can be used with a constant data or the result of computation:

call sendMessage("Waiting for signal StartCycle")
call sendMessage("Waiting for signal"+sSignalName)

sendMessage() can be used with values from elements, arrays or collections:

call sendMessage(sMessage)
call sendMessage(sMessageArray[23])
call sendMessage(s2dArray[12,3])
call sendMessage(s3dArray[5,7,9])
call sendMessage(sMessageColl[sMessageName])

After these calls, the value of sMessage, sMessageArray[23], s2dArray[12,3], s3dArray[5,7,9],
sMessageColl[sMessageName] will not have been changed by the instructions in sendMessage().

2.6.2. PARAMETER BY ELEMENT REFERENCE

When a parameter is defined by element reference, the system creates a local variable and initializes it with a link
to the data supplied by the calling program. The variable passed by reference may have an element, array or
collection container, but only the value specified in the call is passed to the sub-program. The container of the
parameter is always an element. All changes made to the value of the parameter in the sub-program directly
affect the corresponding value of the calling program's data. It is not possible to pass a VAL 3 constant data or
the result of a VAL 3 expression by element reference.

Example
Let sendMessage(string& sMessage) be a program with a single parameter passed by element reference.

sendMessage() cannot be used with a constant data or the result of computation:

// compilation errors: variable expected as parameter
call sendMessage("Waiting for signal StartCycle")
call sendMessage("Waiting for signal"+sSignalName)

sendMessage() can be used with values from elements, arrays or collections:

call sendMessage(sMessage)
call sendMessage(sMessageArray[23])
call sendMessage(s2dArray[12,3])
call sendMessage(s3dArray[5,7,9])
call sendMessage(sMessageColl[sMessageName])

After these calls, the value of
sMessage, sMessageArray[23], s2dArray[12,3], s3dArray[5,7,9], sMessageColl[sMessageName] may have
been changed by the instructions in sendMessage().

VAL 3 © Stäubli 2010 – D28077104A 37 / 191

Chapter 2 - VAL 3 language elements

2.6.3. PARAMETER BY ARRAY OR COLLECTION REFERENCE

When a parameter is defined by array or collection reference, the system creates a local variable and initializes it
with a link to the data supplied by the calling program. The container of the parameter in the sub program is the
same as the container of the supplied variable: a one, two or three dimensions array, or a collection. All changes
made to any value of the parameter in the sub-program directly affect the corresponding value of the calling
program's data.

It is possible for one dimension arrays to pass only part of the array to the sub-program, by specifying the first
accessible element in the array. For two dimensions arrays, three dimensions arrays, and collections, it is not
possible to pass only part of the array or collection to the sub-program. The variable must then be passed without
square brackets [] specifying an index or a key. It is not possible to pass a VAL 3 constant data or the result of a
VAL 3 expression by array or collection reference.

Example

Let send1dMessage(string& s1dArray[]) be a program with a single parameter passed by array reference (one
dimension).

Let send2dMessage(string& s2dArray[]) be a program with a single parameter passed by array reference (two
dimensions).

Let send3dMessage(string& s3dArray[] be a program with a single parameter passed by array reference (three
dimensions).

Let sendCollMessage(string& sMessageColl[""]) be a program with a single parameter passed by collection
reference.

None of these programs can be used with a constant data or the result of computation:

// compilation errors: array variable expected as parameter
call send1dMessage("Waiting for signal StartCycle")
call send1dMessage("Waiting for signal"+l_sSignalName)

The container of the passed variable must match the declared container of the parameter:

// compilation errors: 1d array variable expected
call send1dMessage(sMessageColl)
call send1dMessage(s2dArray[12,3])
// compilation error: collection variable expected
call sendCollMessage(sMessage)

It is not possible to pass part of an array or collection, except for one-dimensional arrays. Arrays and collections
must be specified without index or key.

// correct parameter
call send2dMessage(s2dArray)
call send3dMessage(s3dArray)
call sendCollMessage(sMessageColl)
call send1dMessage(sMessageArray)
call send1dMessage(sMessageArray[23])
// compilation errors: unexpected indices for the array
call send2dMessage(s2dArray[12,3])
call send3dMessage(s3dArray[5,7,9])
// compilation error: unexpected indices for the collection
call sendCollMessage(sMessageColl[l_sMessageName])

In the latter case, only the part of the array sMessageArray starting with index 23 is passed to the
send1dMessage() program. Values of sMessageArray with index lower than 23 cannot be accessed by
send1dMessage().

© Stäubli 2010 – D28077104A VAL 338 / 191

VAL 3 © Stäubli 2010 – D28077104A 39 / 191

Chapter 3 - Simple types

0

CHAPTER 3

SIMPLE TYPES

© Stäubli 2010 – D28077104A VAL 340 / 191

VAL 3 © Stäubli 2010 – D28077104A 41 / 191

Chapter 3 - Simple types

3.1. BOOL TYPE

3.1.1. DEFINITION

bool type values or constants can be:
- true: true value
- false: false value

When a bool type variable is initialized, its default value is false.

3.1.2. OPERATORS

In ascending order of priority:

To avoid confusions between = and == operators, the = operator is not allowed within VAL 3 expressions used as
instruction parameter. if(bCondition1=bCondition2) would be interpreted as bCondition1=bCondition2;
if(bCondition1==true). But often the intention was to write: if(bCondition1==bCondition2), which is really different !

bool <bool& bVariable> =
<bool bCondition>

Assigns the value of bCondition to the variable bVariable and
returns the value of bCondition

bool <bool bCondition1> or
<bool bCondition2>

Returns the value of the logical OR between bCondition1 and
bCondition2. bCondition2 is only assessed if bCondition1 is
false.

bool <bool bCondition1> and
<bool bCondition2>

Returns the value of the logical AND between bCondition1 and
bCondition2. bCondition2 is only assessed if bCondition1 is
true.

bool <bool bCondition1> xor
bool <bCondition2>

Returns the value of the exclusive OR between bCondition1 and
bCondition2

bool <bool bCondition1> !=
<bool bCondition2>

Tests the equality of the values of bCondition1 and bCondition2.
Returns true if the values are different, and otherwise returns false.

bool <bool bCondition1> ==
<bool bCondition2>

Tests the equality of the values of bCondition1 and bCondition2.
Returns true if the values are identical, and otherwise returns false.

bool ! <bool bCondition> Returns the negation of the value of the bCondition

© Stäubli 2010 – D28077104A VAL 342 / 191

3.2. NUM TYPE

3.2.1. DEFINITION

The num type represents a numerical value with about 14 significant digits.
The accuracy of each numerical computation is therefore limited by these 14 significant digits.
This must be taken into account when testing the equality of two numerical values: this must normally be done
within a specific level.

The format of numerical type constants is as follows:
[-] <digits>[.<digits>][e[-]<digits>]

The ’e’ is a marker for numerical scientific notation, in replacement of ’10 ’: 1e3 is equal to 1 x 10 3 (or 1000),
1e-2 is equal to 1 x 10 (-2) (or 0.01).

The default initialization value of num type variables is 0.

Example
A test on the result of numerical computation must take into account the numerical unaccuracy of computations.

if cos(nAngle)==0,if abs(cos(nAngle))<1e-10 should better be replaced with if abs(cos(nAngle))<1e-10.

Here are some constant numbers:

1
0.2
-3.141592653
6.02214179e23
1.054571628e-34

VAL 3 © Stäubli 2010 – D28077104A 43 / 191

Chapter 3 - Simple types

3.2.2. OPERATORS

In ascending order of priority:

To avoid confusions between = and == operators, the = operator is not allowed within VAL 3 expressions used as
instruction parameter. nCos=cos(nAngle=30) must be replaced with nAngle=30; nCos=cos(nAngle).

num <num& nVariable> = <num nValue> Assigns nValue to the variable nVariable and
returns nValue.

bool <num nValue1> != <num nValue2> Returns true if nValue1 is not equal to nValue2,
otherwise returns false.

bool <num nValue1> == <num nValue2> Returns true if nValue1 is equal to nValue2,
otherwise returns false.

bool <num nValue1> >= <num nValue2> Returns true if nValue1 is greater than or equal to
nValue2, otherwise returns false.

bool <num nValue1> > <num nValue2> Returns true if nValue1 is definitely greater than
nValue2, otherwise returns false.

bool <num nValue1> <= <num nValue2> Returns true if nValue1 is less than or equal to
nValue2, otherwise returns false.

bool <num nValue1> < <num nValue2> Returns true if nValue1 is definitely less than
nValue2, otherwise returns false.

num <num nValue1> - <num nValue2> Returns the difference between nValue1 and
nValue2.

num <num nValue1> + <num nValue2> Returns the sum of nValue1 and nValue2.

num <num nValue1> % <num nValue2> Modulo operation: It returns the remainder of the
integer division of nValue1 by nValue2. A runtime
error is generated if nValue2 is 0. The sign of the
remainder is the same as that of nValue1.

num <num nValue1> / <num nValue2> Returns the quotient of nValue1 by nValue2. A
runtime error is generated if nValue2 is 0.

num <num nValue1> * <num nValue2> Returns the product of nValue1 and nValue2.

num - <num nValue> Returns the inverse of nValue.

© Stäubli 2010 – D28077104A VAL 344 / 191

3.2.3. INSTRUCTIONS

num sin(num nAngle)

Function
Returns the sine of nAngle.

Parameter

Example
sin(30) returns 0.5

num asin(num nValue)

Function
Returns the inverse sine of nValue in degrees. The resulting angle is between -90 and +90 degrees.

A runtime error is generated if nValue is greater than 1 or less than -1.

Example
asin(0.5) returns 30

num cos(num nAngle)

Function
Returns the cosine of Angle.

Parameter

Example
cos(60) returns 0.5

num acos(num nValue)

Function
Returns the inverse cosine of nValue, in degrees. The resulting angle is between 0 and 180 degrees.

A runtime error is generated if nValue is greater than 1 or less than -1.

Example
acos(0.5) returns 60

num tan(num nAngle)

Function
Returns the tangent of Angle.

num nAngle angle in degrees

num nAngle angle in degrees

VAL 3 © Stäubli 2010 – D28077104A 45 / 191

Chapter 3 - Simple types

Parameter

Example
tan(45) returns 1.0

num atan(num nValue)

Function
Returns the inverse tangent of nValue, in degrees. The resulting angle is between -90 and +90 degrees.

Example
atan(1) returns 45

num abs(num nValue)

Function
Returns the absolute value of nValue.

Example
A test on the result of numerical computation must take into account the numerical unaccuracy of computations:

if cos(nAngle)==0 should better be replaced with if abs(cos(nAngle))<1e-10.

abs(3.1415) returns 3.1415
abs(-3.1415) returns 3.1415

num sqrt(num nValue)

Function
Returns the square root of nValue.

A runtime error is generated if nValue is negative.

Example
sqrt(9) returns 3

num exp(num nValue)

Function
Returns the exponential function of nValue.

A runtime error is generated if nValue is too large.

Example
exp(1) returns 2.718281828459

num power(num nX, num nY)

Function
Returns nX to the power nY: nXnY

A runtime error is generated if nX is negative or null, or if the result is too large.

num nAngle angle in degrees

© Stäubli 2010 – D28077104A VAL 346 / 191

Example
This program computes in 2 different ways 5 to the power 7.

// First way: power instruction
nResult = power(5,7)
// Second way: power(x,y)=exp(y*ln(x)) (with numerical inaccuracy)
nResult = exp(7*ln(5))

num ln(num nValue)

Function
Returns the natural logarithm of nValue.

A runtime error is generated if nValue is negative or zero.

Example
ln(2.718281828) returns 0.99999999983113

num log(num nValue)

Function
Returns the common logarithm of nValue.

A runtime error is generated if nValue is negative or zero.

Example
log(1000) returns 3

num roundUp(num nValue)

Function
Returns nValue rounded up to the nearest integer.

Example
roundUp(7.8) returns 8

roundUp(-7.8) returns -7

num roundDown(num nValue)

Function
Returns nValue rounded down to the nearest integer.

Example
roundDown(7.8) returns 7

roundDown(-7.8) returns -8

num round(num nValue)

Function
Returns nValue rounded up or down to the nearest integer.

Example
round(7.8) returns 8

round(-7.8) returns -8
round(0.5) returns 1

VAL 3 © Stäubli 2010 – D28077104A 47 / 191

Chapter 3 - Simple types

round(-0.5) returns 0

© Stäubli 2010 – D28077104A VAL 348 / 191

num min(num nX, num nY)

Function
Returns the minimum values of nX and nY.

Example
min(-1,10) returns -1

num max(num nX, num nY)

Function
Returns the maximum values of nX and nY.

Example
max(-1,10) returns 10

num limit(num nValue, num nMin, num nMax)

Function
Returns nValue limited by nMin and nMax.

Example
limit(30,-90,90) returns 30
limit(100,-90,90) returns 90
limit(-100,-90,90) returns -90

num sel(bool bCondition, num nValue1, num nValue2)

Function
Returns nValue1 if bCondition is true, otherwise returns nValue2.

Example
sel(true,-90, 90) returns -90
sel(false,-90, 90) returns 90

VAL 3 © Stäubli 2010 – D28077104A 49 / 191

Chapter 3 - Simple types

3.3. BIT FIELD TYPE

3.3.1. DEFINITION

A bit field is a mean to store and exchange in a compact way a series of bits (Boolean values or digital Inputs/
Outputs). VAL 3 does not provide a specific data type to handle bit fields, but reuses the num type to store a 32-
bits bit field as a positive integer value in the range [0, 2 32].

Any VAL 3 numerical value can be seen as 32-bits bit field; the bit field handling instructions automatically round
a numerical value into a 32-bits positive integer that is then treated as a 32-bits bit field.

3.3.2. OPERATORS

The standard operators of the num type apply on a bit field: '=', '==', '!='.

3.3.3. INSTRUCTIONS

num bNot(num nBitField)

Function
This instruction returns the bitwise logical 'not' (negation) operation on a 32-bits bit field. (The i th bit of the result
is set to 1 if the i th bit of the input is 0). This result is therefore a positive integer in the range [0, 2 32].

The numerical input is first rounded to a positive integer in the range [0, 2 32] before the bitwise operation is
applied.

Example
This program resets bits i to j of a bit field nBitField using a mask nMask.

// Compute a bit mask with bits i to j set to 1 (see bOr for explanations)
nMask=(power(2,j-i+1)-1)*power(2,i)
// Invert the mask to have all bits to 1 except bit i to j
nMask=bNot(nMask)
// Reset bits i to j using the bitwise 'and'
nBitField=bAnd(nBitField, nMask)

num bAnd(num nBitField1, num nBitField2)

Function
This instruction returns the bitwise logical 'and' operation on two 32-bits bit fields. (The i th bit of the result is set
to 1 if the i th bits of both inputs are set to 1). This result is therefore a positive integer in the range [0, 2 32].

The numerical inputs are first rounded to a positive integer in the range [0, 2 32] before the bitwise operation is
applied.

Example
This program displays a 32 bits bit field nBitField on screen by testing each bit one after the other:

for i=31 to 0 step -1
// Compute the mask for the i th bit
 nMask=power(2,i)
 if bAnd(nBitField, nMask)==nMask
 put("1")
 else
 put("0")
 endIf
endFor
putln("")

© Stäubli 2010 – D28077104A VAL 350 / 191

num bOr(num nBitField1, num nBitField2)

Function
This instruction returns the bitwise logical 'or' operation on two 32-bits bit fields. (The i th bit of the result is set to
1 if the i th bit of at least one input is set to 1). This result is therefore a positive integer in the range [0, 2 32].

The numerical inputs are first rounded to a positive integer in the range [0, 2 32] before the bitwise operation is
applied.

Example
This program computes in two different ways a bit field mask where the i th to the j th bits are set.

// First way: logical 'or' on bits i to j
 nBitField=0
for k=i to j
 nBitField=bOr(nBitField, power(2,k))
endFor
// Second way: compute a bit mask of (j-i) bits
 nBitField=(power(2,j-i+1)-1)
// Then shift the bit mask by i bits
 nBitField=nBitField*power(2,i)

num bXor(num nBitField1, num nBitField2)

Function
This instruction returns the bitwise logical 'xor' (exclusive or) operation on two 32-bits bit fields. (The i th bit of the
result is set to 1 if the i th bits of the two inputs are different). This result is therefore a positive integer in the range
[0, 2 32].

The numerical inputs are first rounded to a positive integer in the range [0, 2 32] before the bitwise operation is
applied.

Example
This program inverts bits i to j of the bit field nBitField:

// Compute mask for bits i to j (see bOr example)
 nMask=(power(2,j-i+1)-1)*power(2,i)
// Invert bits i to j using the mask
 nBitField=bXor(nBitField,nMask)

VAL 3 © Stäubli 2010 – D28077104A 51 / 191

Chapter 3 - Simple types

num toBinary(num nValue[], num nValueSize, string sDataFormat,
num& nDataByte[])

num fromBinary(num nDataByte[], num nDataSize,
string sDataFormat, num& nValue[])

Function
The purpose of the toBinary/fromBinary instructions is to enable the exchange of numerical values between
two devices, using a serial line or a network connection. The numerical values are first encoded into a stream of
bytes. The bytes are then sent to the peer device. Finally the peer device decodes the bytes to recover the initial
numerical values. Different binary encodings of numerical values are possible.

The toBinary instruction encodes numerical values into an array of bytes (8-bits bit field, positive integer in the
range [0, 255]) as specified by the data format sDataFormat. The number of numerical values nValue to encode
is given by the nValueSize parameter. The result is stored in the nDataByte array, and the instruction returns the
number of encoded bytes in this array.

A runtime error is generated if the number of values to encode nValueSize is greater than the size of nValue, if
the specified format is not supported or if the result array nDataByte is not large enough to encode all input data.

The fromBinary instruction decodes an array of bytes into numerical values nValue, as specified by the data
format sDataFormat. The number of bytes to decode is given by the nDataSize parameter. The result is stored
in the nValue array and the instruction returns the number of values in this array. If some binary data are
corrupted (bytes out of the range [0, 255] or invalid floating point encoding), the instruction returns the opposite of
the number of correctly decoded values (negative value).

A runtime error is generated if the number of bytes to decode nDataSize is greater than the size of nDataByte, if
the specified format is not supported or if the result array nValue is not large enough to decode all input data.

The supported binary encodings are given by the table below:

• The sign "-" indicates the encoding of a signed integer (the last bit of the bit field encodes the sign of the
value).

• The digit gives the number of bytes for the encoding of each numerical value.
• The ".0" extension marks floating point values encoding (both IEEE 754 single and double precision

encodings are supported).
• The final letter specifies the order of the bytes: "l" for 'little endian' (the less significant byte is encoded first),

"b" for 'big endian' (the most significant byte is encoded first). The 'big endian' encoding is the standard for
networking applications (TCP/IP).

© Stäubli 2010 – D28077104A VAL 352 / 191

The native VAL 3 format for numerical data is the double precision encoding. This format must be used to
exchange numerical values without loss of accuracy.

Example
The first program encodes a trsf data trShiftOut into a byte array nByteOut and sends it with the siTcpClient
serial connection. The second program reads the bytes from the siTcpServer serial connection and convert
them back into a trsf trShiftIn.

// ---- Program to send a trsf ----
// Copy the trsf coordinates into a numerical buffer
nTrsfOut[0]=trShiftOut.x
nTrsfOut[1]=trShiftOut.y
nTrsfOut[2]=trShiftOut.z
nTrsfOut[3]=trShiftOut.rx
nTrsfOut[4]=trShiftOut.ry
nTrsfOut[5]=trShiftOut.rz
// Encode 6 numerical values (double precision floating point, therefore 8 bytes) into 6*8=48 bytes in nByteOut[48]
array
toBinary(nTrsfOut, 6, "8.0b", nByteOut)
// Send nByte array (48 bytes) through tcpClient
sioSet(siTcpClient, nByteOut)

// ---- Program to read a trsf ----
nb=0
i=0
while (nb<48)
 nb=sioGet(siTcpServer, nByteIn[i])
 if(nb>0)
 i=i+nb
 else
// Communication error
 return
 endIf
endWhile
if (fromBinary(nByteIn, 48, "8.0b", nTrsfIn) != 6)
 // Corrupted data

return
else
 trShiftIn.x=nTrsfIn[0]
 trShiftIn.y=nTrsfIn[1]
 trShiftIn.z=nTrsfIn[2]
 trShiftIn.rx=nTrsfIn[3]
 trShiftIn.ry=nTrsfIn[4]
 trShiftIn.rz=nTrsfIn[5]
endIf

"-1" Signed byte
"1" Unsigned byte
"-2l" Signed word, little endian
"-2b" Signed word, big endian
"2l" Unsigned word, little endian
"2b" Unsigned word, big endian
"-4l" Signed double word, little endian
"-4b" Signed double word, big endian
"4l" Unsigned double word, little endian
"4b" Unsigned double word, big endian
"4.0l" Single precision floating point value, little endian
"4.0b" Single precision floating point value, big endian
"8.0l" Double precision floating point value, little endian
"8.0b" Double precision floating point value, big endian

VAL 3 © Stäubli 2010 – D28077104A 53 / 191

Chapter 3 - Simple types

3.4. STRING TYPE

3.4.1. DEFINITION

String type variables are used to store texts. The string type supports the standard Unicode character set. Note that the
correct display of a Unicode character depends on the character fonts installed on the display device.
A string is stored on 128 bytes; the maximum number of characters in a string depends on the characters used,
because the internal character encoding (Unicode UTF8) uses from 1 byte (for ASCII characters) to 4 bytes (3 for
Chinese characters).
The maximum length of a ASCII string is therefore 128 characters; the maximum length of a Chinese string is 42
characters.
The default initialization value of string type variables is "" (empty string).

3.4.2. OPERATORS

In ascending order of priority:

To avoid confusions between = and == operators, the = operator is not allowed within VAL 3 expressions used
as instruction parameter. nLen=len(sString="hello wild world") must be replaced with sString="hello wild world";
nLen=len(sString).

3.4.3. INSTRUCTIONS

string toString(string sFormat, num nValue)

Function
This instruction returns a character string representing nValue according to the sFormat display format.

The format is "size.precision", where size is the minimum size of the result (spaces are added at the beginning
of the string if necessary), and precision is the number of significant digits after the decimal point (the 0 at the
end of the string are replaced by spaces). By default, size and precision equal 0. The value's integer portion is
never shortened, even if its display length exceeds size.

Example
returns

nPi = 3.141592654
toString(".4", nPi) returns "3.1416"
toString("8", nPi) returns " 3" (7 spaces before the ’3’)
toString("8.4", nPi) returns " 3.1416" (2 spaces before the ’3’)
toString("8.4", 2.70001) returns " 2.7 " (2 spaces before the ’2’, 3 spaces after the ’7’)
toString("", nPi) returns "3"
toString("1.2", 1234.1234) returns "1234.12"

See also
string chr(num nCodePoint)
string toNum(string sString, num& nValue, bool& bReport)

string <string& sVariable> = <string sString> Assigns sString to the variable sVariable and
returns sString.

bool <string sString1> != <string sString2> Returns true if sString1 and sString2 are not
identical, otherwise returns false.

bool <string sString1> == <string sString2> Returns true if sString1 and sString2 are
identical, otherwise returns false.

string <string sString1> + <string <sString2> Returns the first characters (limited to 128 bytes) of
sString1 concatenated with sString2.

© Stäubli 2010 – D28077104A VAL 354 / 191

string toNum(string sString, num& nValue, bool& bReport)

Function
This instructions finds the numerical nValue represented at the beginning of the sString specified, and returns
sString in which all the characters have been deleted until the next representation of a numerical value.

If the beginning of the sString does not represent a numerical value, bReport is set to false and nValue is not
modified, otherwise bReport is set to true.

Example
toNum("10 20 30", nVal, bOk) returns "20 30", nVal equals 10, bOk equals true
toNum("a10 20 30", nVal, bOk) returns "a10 20 30", nVal is unchanged, bOk equals false
toNum("10 end", nVal, bOk) returns "", nVal equals 10, bOk equals true

This program displays successively 90, 0, -7.6, 17.3
sBuffer = "+90 0.0 -7.6 17.3"
do
 sBuffer = toNum(sBuffer, nVal, bOk)
 putln(nVal)
until (sBuffer=="") or (bOk != true)

See also
string toString(string sFormat, num nValue)

VAL 3 © Stäubli 2010 – D28077104A 55 / 191

Chapter 3 - Simple types

string chr(num nCodePoint)

Function
This instructions returns the string made up of the specified Unicode code point character, if it is a valid Unicode
code point. Otherwise it returns an empty string.

The following table gives the Unicode code points below 128 (it matches the ASCII character table). The
characters in grey boxes are control codes that may be replaced with a question mark when the string is
displayed.
All valid Unicode code points are supported by the VAL 3 string type. However, the display of the character
depends on the installed character fonts on the display device. The complete list of Unicode characters can be
found at http://www.unicode.org (search 'Code Charts').

Example
chr(65) returns "A"

See also
num asc(string sText, num nPosition)

© Stäubli 2010 – D28077104A VAL 356 / 191

num asc(string sText, num nPosition)

Function
This instruction returns the Unicode code point of the nPosition index character.

It returns -1 if nPosition is negative or greater than the specified text length.

Example
asc("A",0) returns 65

See also
string chr(num nCodePoint)

string left(string sText, num nSize)

Function
This instructions returns the first nSize characters of sText. If nSize is greater than the length of sText, the
instruction returns sText.

A runtime error is generated if nSize is negative.

Example
left("hello world",5) returns "hello"
left("hello world",20) returns "hello world"

string right(string sText, num nSize)

Function
This instruction returns the last nSize characters of sText. If the number specified is greater than the length of
sText, the instruction returns sText.

A runtime error is generated if nSize is negative.

Example
right("hello world",5) returns "world"
right("hello world",20) returns "hello world"

string mid(string sText, num nSize, num nPosition)

Function
Returns nSize characters of sText from the nPosition index character, stopping at the end of sText.

A runtime error is generated if nSize or nPosition are negative.

Example
mid("hello wild world",4,6) returns "wild"
mid("hello wild world",20,6) returns "wild world"

VAL 3 © Stäubli 2010 – D28077104A 57 / 191

Chapter 3 - Simple types

string insert(string sText, string sInsertion, num nPosition)

Function
This instruction returns sText in which sInsertion is inserted after the nPosition index character. If nPosition is
greater than the size of sText, sInsertion is inserted at the end of sText. The result is truncated if it exceeds 128
bytes.

A runtime error is generated if nPosition is negative.

Example
insert("hello world","wild",6))returns "hello wild world"

string delete(string sText, num nSize, num nPosition)

Function
This instruction returns sText in which nSize have been deleted from the nPosition index character. If
nPosition is greater than the length of sText, the instruction returns sText.

A runtime error is generated if nSize or nPosition are negative.

Example
delete("hello wild world",5,6)returns "hello world"

string replace(string sText, string sReplacement, num nSize,
num nPosition)

Function
This instruction returns sText in which nSize characters have been replaced from the nPosition index character
by sReplacement. If nPosition is greater than the length of sText, the instruction returns sText.

A runtime error is generated if nSize or nPosition are negative.

Example
replace("hello ? world","wild",1,6)returns "hello wild world"

num find(string sText1, string sText2)

Function
This instruction returns the index (between 0 and 127) of the first character in the first occurrence of sText2 in
sText1. If sText2 does not appear in sText1, the instruction returns -1.

Example
find("hello wild world", "wild")returns 6

num len(string sText)

Function
This instruction returns the number of characters in sText.

Example
len("hello wild world")returns 16

See also
num getDisplayLen(string sText)

© Stäubli 2010 – D28077104A VAL 358 / 191

3.5. DIO TYPE

3.5.1. DEFINITION

dio type variables are used to interface a VAL 3 application with system digital inputs and outputs. A dio variable
stores a link to a system digital input or output, the "physical address".

All instructions using a dio type variable not linked to an input/output declared in the system generate a runtime
error. The default initialization value of dio type variables is an undefined link. The link of a dio variable can be
initialized from another dio variable, from the robot MCP, or using VAL 3 Studio in Stäubli Robotics Suite.

3.5.2. OPERATORS

In ascending order of priority:

To avoid confusions between = and == operators, the = operator is not allowed within VAL 3 expressions used as
instruction parameter. if(diOutput=diInput) would be interpreted as: diOutput=diInput; if(diOutput==true). But
often the intention was to write: if(diOutput==diInput), which is really different !

bool <dio diOutput> = <bool bCondition> Assigns bCondition to the diOutput status and
returns bCondition. A runtime error is generated if
diOutput is not linked to a system output.

bool <dio diInput1> != <bool bInput2> Returns true if diInput1 and bInput2 do not have
the same status, otherwise returns false.

bool <dio diInput> != <bool bCondition> Returns true if the diInput status is not equal to
bCondition, otherwise returns false.

bool <dio diInput> == <bool bCondition> Returns true if the diInput status is equal to
bCondition, otherwise returns false.

bool <dio diInput1> == <dio diInput2> Returns true if diInput1 and diInput2 have the
same status, otherwise returns false.

CAUTION:
The ’=’ operator between two dio variables does not exist any more with VAL 3 s7 for
consistency with other ’=’ operators (refer to the definition of the ’=’ operator for user
types). It can be easily replaced with the ’=’ operator between a dio and a bool:
diOut = diIn of earlier VAL 3 versions can be replaced with diOut = (diIn==true).

VAL 3 © Stäubli 2010 – D28077104A 59 / 191

Chapter 3 - Simple types

3.5.3. INSTRUCTIONS

void dioLink(dio& diVariable, dio diSource)

Function
This instruction links diVariable to the input/output to which diSource is linked.

Example
This application uses a signal that can be configured with different hardware devices. The program below tests
which device is installed to initialize the diSignal variable that is then used in the rest of the application.

if(ioStatus(diDevice1Signal)>=0)
// device 1 is installed: use it
 dioLink(diSignal, diDevice1Signal)
elseIf (ioStatus(diDevice2Signal)>=0)
// device 2 is installed: use it
 dioLink(diSignal, diDevice2Signal)
else
 putln("Error: no io device installed")
endIf

num dioGet(dio diArray[])

Function
This instruction returns the numerical value from diArray read as an integer written in binary code, i.e.:
diArray[0] + 2 diArray[1] + 4 diArray[2] + ... + 2 k diArray[k], where diArray[i] = 1 if diArray[i] is true,
otherwise 0.

A runtime error is generated if a member of diArray is not linked to a system input/output.

Example
diArray[0] = false
diArray[1] = true
diArray[2] = false
diArray[3] = true
dioGet(diArray) returns 10 = 0+2*1+4*0+8*1

See also
num dioSet(dio diArray[], num nValue)

© Stäubli 2010 – D28077104A VAL 360 / 191

num dioSet(dio diArray[], num nValue)

Function
This instruction converts the integer part of nValue in binary code, assigns it to the outputs of diArray, and
returns the corresponding value, i.e.:

diArray[0] + 2 diArray[1] + 4 diArray[2] + ... + 2 k diArray[k], where diArray[i] = 1 if diArray[i] is true,
otherwise 0.

A runtime error is generated if a member of diArray is not linked to a system output.

Example
Using di4bitsArray, array of size 4:

dioSet(di4bitsArray, 10) returns 10

dioSet(di4bitsArray, 26) returns 10, because 26 requires 5 bits in a binary encoding: 10 = 26 - 2 4

See also
num dioGet(dio diArray[])

num ioStatus(dio diInputOutput)

Function
This instruction returns a positive number if the specified input output variable is working, and a negative number
if it is in error. The returned value details the status of the input output:

Example
This application uses a signal that can be configured with different hardware devices. The program below tests
which device is installed to initialize the diSignal variable that is then used in the rest of the application.

if(ioStatus(diDevice1Signal)>=0)
// device 1 is installed: use it
 dioLink(diSignal, diDevice1Signal)
elseIf (ioStatus(diDevice2Signal)>=0)
// device 2 is installed: use it
 dioLink(diSignal, diDevice2Signal)
else
 putln("Error: no io device installed")
endIf

See also
num ioStatus(dio diInputOutput, string& sDescription, string& sPhysicalPath)
num ioStatus(aio aiInputOutput)
num ioBusStatus(string& sErrorDescription[])

0 The input output is working.

1

The input output is working, but is locked by the operator. Inputs have then a
fixed value (controlled by the operator) that may differ from the hardware value.
Outputs have then a fixed value, controlled by the operator: writing to the output
has no effect at all. The lock mode is a debugging mean.

2 The input output is simulated (software input output, no impact to hardware).

-1 The input output is not working because the link (physical address) is not
defined.

-2
The input output is not working because the link (physical address) does not
match any system input output. The hardware device corresponding to the
physical address is either not installed or could not be initialized.

-3 The input output is not working because the input output device is in error.

VAL 3 © Stäubli 2010 – D28077104A 61 / 191

Chapter 3 - Simple types

num ioStatus(dio diInputOutput, string& sDescription,
string& sPhysicalPath)

Function
This instruction performs exactly as the ioStatus instruction described above, but returns in addition the
description text and the link (physical address) for the specified input output.

The description is a free text defined with the input output control tools. The format of the physical link depends
on the input output device. It has usually the form: ‘deviceName\moduleName\ioAddress’.

Example
This program tests a signal and displays error information if it is not working.

if ioStatus(diSignal, sDecription, sPath)<0
 putln("Signal "+sPath+ "in error")
 putln("Description:"+sDecription)
endIf

See also
num ioStatus(aio aiInputOutput)
num ioStatus(dio diInputOutput)
num ioBusStatus(string& sErrorDescription[])

© Stäubli 2010 – D28077104A VAL 362 / 191

3.6. AIO TYPE

3.6.1. DEFINITION

aio type variables are used to interface a VAL 3 application with system analog inputs and outputs. A aio
variable stores a link to a system analog input or output, the "physical address".

All instructions using a aio type variable not linked to an input/output declared in the system generate a runtime
error. The default initialization value of aio type variables is an undefined link. The link of a aio variable can be
initialized from another aio variable, from the robot MCP, or using VAL 3 Studio in Stäubli Robotics Suite.

3.6.2. INSTRUCTIONS

void aioLink(aio& aiVariable, aio aiSource)

Function
This instructions links aiVariable to the input/output to which aiSource is linked.

Example
This application uses a signal that can be configured with different hardware devices. The program below tests
which device is installed to initialize the aiSignal variable that is then used in the rest of the application.

if(ioStatus(aiDevice1Signal)>=0)
// device 1 is installed: use it
 aioLink(aiSignal, aiDevice1Signal)
elseIf (ioStatus(aiDevice2Signal)>=0)
// device 2 is installed: use it
 aioLink(aiSignal, aiDevice2Signal)
else
 putln("Error: no io device installed")
endIf

num aioGet(aio aiInput)

Function
This instruction returns the numerical value of aiInput.
A runtime error is generated if aiInput is not linked to a system input/output.

Example
aioGet(aiSensor) returns the current sensor value

See also
num aioSet(aio aiOutput, num nValue)

num aioSet(aio aiOutput, num nValue)

Function
This instruction assigns nValue to aiOutput and returns nValue. If the value being set is out of the range of the
aio, the returned number will be the actual value of the aio output.

A runtime error is generated if aiOutput is not linked to a system output.

Example
aioSet(aiCommand, -12.3) writes -12.3 to the output command and returns -12.3 if aiCommand is a floating point
output.
aioSet(aiCommand, 12.3) writes 12 to the output command and returns 12 if aiCommand is an integer output.

VAL 3 © Stäubli 2010 – D28077104A 63 / 191

Chapter 3 - Simple types

See also
num aioGet(aio aiInput)

num ioStatus(aio aiInputOutput)

Function
This instruction returns a positive number if the specified input output variable is working, and a negative number
if it is in error. The returned value details the status of the input output:

0: The input output is working.

1: The input output is working, but is locked by the operator. Inputs have then a fixed value (controlled by the
operator) that may differ from the hardware value. Outputs have then a fixed value, controlled by the operator:
writing to the output has no effect at all. The lock mode is a debugging mean.

2: The input output is simulated (software input output, no impact to hardware).

-1: The input output is not working because the link (physical address) is not defined.

-2: The input output is not working because the link (physical address) does not match any system input output.
The hardware device corresponding to the physical address is either not installed or could not be initialized.

-3: The input output is not working because the input output device is in error.

Example
This application uses a signal that can be configured with different hardware devices. The program below tests
which device is installed to initialize the aiSignal variable that is then used in the rest of the application.

if(ioStatus(aiDevice1Signal)>=0)
// device 1 is installed: use it
 aioLink(aiSignal, aiDevice1Signal)
elseIf (ioStatus(aiDevice2Signal)>=0)
// device 2 is installed: use it
 aioLink(aiSignal, aiDevice2Signal)
else
 putln("Error: no io device installed")
endIf

See also
num ioStatus(dio diInputOutput)

num ioStatus(aio diInputOutput, string& sDescription,
string& sPhysicalPath)

Function
This instruction performs exactly as the ioStatus instruction described above, but returns in addition the
description text and the link (physical address) for the specified input output.

The description is a free text defined with the input output control tools. The format of the physical link depends
on the input output device. It has usually the form: ‘deviceName\moduleName\ioAddress’.

Example
This program tests a signal and displays error information if it is not working.

if ioStatus(aiSignal, sDecription, sPath)<0
 putln("Signal "+sPath+ "in error")
 putln("Description:"+sDecription)
endIf

See also
num ioStatus(aio aiInputOutput)
num ioStatus(dio diInputOutput)

© Stäubli 2010 – D28077104A VAL 364 / 191

3.7. SIO TYPE

3.7.1. DEFINITION

The sio type is used to link a VAL 3 variable to a serial port or an Ethernet socket connection. A sio input-output
is characterized by:

• Parameters specific to the type of communication, defined in the system
• An end of string character, to allow the use of the string type
• A communication timeout delay

The serial system inputs-outputs are active at all times. The Ethernet socket connections are opened at the time
of the initial reading or writing access by a VAL 3 program. The Ethernet socket connections are closed
automatically when the VAL 3 application is closed.

All instructions using a sio type variable not linked to an input/output declared in the system generate a runtime
error. The default initialization value of sio type variables is an undefined link. The link of a sio variable can be
initialized from another sio variable, from the robot MCP, or using VAL 3 Studio in Stäubli Robotics Suite.

3.7.2. OPERATORS

When the communication time out delay is reached on reading or writing the serial input/output, a runtime error is
generated.

To avoid confusions between = and == operators, the = operator is not allowed within VAL 3 expressions used
as instruction parameter. nLen=len(sString=siInput) must be replaced with sString=siInput; nLen=len(sString).

string <sio siOutput> = <string sText> Writes successively on siOutput the sText characters
Unicode UTF8 codes, followed by the end of string
character, and returns sText.

num <sio siOutput> = <num nData item> Writes on siOutput the closest integer to nData item,
modulo 256, and returns the value actually sent.

num <num nData> = <sio siInput> Reads a byte on siInput and assigns nData with the
byte value.

string <string sText> = <sio siInput> Reads on siInput a string of Unicode UFT8 characters
and affects sText with this string. The characters that
are not supported by the string type are ignored. The
string is completed when the end of string character is
read, or when sText reaches the maximum size of a
string (128 bytes). The end of string character is not
copied into sText.

VAL 3 © Stäubli 2010 – D28077104A 65 / 191

Chapter 3 - Simple types

3.7.3. INSTRUCTIONS

void sioLink(sio& siVariable, sio siSource)

Function
The instructions links siVariable to the serial system input/output to which siSource is linked.

See also
void dioLink(dio& diVariable, dio diSource)
void aioLink(aio& aiVariable, aio aiSource)

num clearBuffer(sio siVariable)

Function
This instruction clears the siVariable reading buffer and returns the number of characters deleted

For an Ethernet socket connection, clearBuffer deactivates (closes) the socket. clearBuffer returns -1 if the
socket has already been deactivated.

A runtime error is generated if siVariable is not connected to a system serial link or Ethernet socket.

num sioGet(sio siInput, num& nData[])

Function
This instruction reads a single character or an array of characters from siInput and returns the number of
characters read.
The reading sequence stops when the nData array is full or when the input reading buffer is empty.
For an Ethernet socket connection, sioGet tries first to open a connection if there is no open connection. When
the timeout for input communication has been reached, sioGet returns -1. If the connection is open, but there is
no data in the input reader buffer, sioGet waits until data is received or until the end of the timeout period has been
reached.
A runtime error is generated if siInput is not linked to a system serial port or Ethernet socket, or if nData is not a
VAL 3 variable.

num sioSet(sio siOutput, num& nData[])

Function
This instruction writes a character or an array of characters to siOutput and returns the number of characters
written.
Numerical values are converted before transmission into integers between 0 and 255, taking the nearest integer
modulo 256.
For an Ethernet socket connection, sioSet tries first to open a connection if there is no open connection. When
the end of the output communication waiting time has been reached, sioSet returns -1. The number of characters
written can be less than the size of nData if a communication error is detected.
A runtime error is generated if siOutput is not linked to a system serial port or Ethernet socket.

© Stäubli 2010 – D28077104A VAL 366 / 191

num sioCtrl(sio siChannel, string nParameter, *value)

Function
This instruction modifies a communication parameter of the specified serial input/output siChannel.

For serial lines, some parameters or parameter values may not be supported by the hardware: refer to the
controller's manual.

The instruction returns:

The supported parameters are given by the table below:

Example
This program configures the main parameters of a serial line.

sioCtrl(siPortSerial1, "baudRate", 115200)
sioCtrl(siPortSerial1, "bits", 8)
sioCtrl(siPortSerial1, "parity", "none")
sioCtrl(siPortSerial1, "stopBits", 1)
sioCtrl(siPortSerial1, "timeout", 0)
sioCtrl(siPortSerial1, "endOfString", 13)

0 The parameter is successfully modified
-1 The parameter is not defined
-2 The parameter value has not the expected type
-3 The parameter value is not supported
-4 The serial channel is not ready to apply the parameter change (stop it first)
-5 The parameter is not defined for this type of channel

Parameter
name

Parameter
type

Description

"port" num (For TCP client or server) TCP port

"target" string (For TCP client) IP address of the TCP server to reach, such as
"192.168.0.254"

"clients" num (For TCP server) Maximum number of simultaneous clients on the server

"endOfString" num (For serial line, TCP client and server) ASCII code for the end of string
character to be used with sio '=' operators (in range [0, 255])

"timeout" num (For serial line, TCP client and server) Maximum response time for the
communication channel. 0 means no time out.

"baudRate" num (For serial line) Communication speed

"parity" string (For serial line) Parity control: "none", "even" or "odd"

"bits" num (For serial line) Number of bits per byte (5, 6, 7 or 8)

"stopBits" num (For serial line) Number of stop bits per byte (1 or 2)

"mode" string (For serial line) Communication mode: "rs232" or "rs422"

"flowControl" string (For serial line) Flow control: "none" or "hardware"

"nagle" bool
(For TCP client or server) enable (default) or disable the nagle optimization.
Disabling nagle optimization improves response time but increases network
load.

VAL 3 © Stäubli 2010 – D28077104A 67 / 191

Chapter 4 - User interface

CHAPTER 4

USER INTERFACE

© Stäubli 2010 – D28077104A VAL 368 / 191

VAL 3 © Stäubli 2010 – D28077104A 69 / 191

Chapter 4 - User interface

4.1. USER PAGE

In the VAL 3 language, the user interface instructions are used to:

- display messages on a page of the manual control pendant (MCP) reserved for the application
- acquire keystrokes from the MCP keyboard

User page

The user page has 14 lines of 40 columns. The last line is often used to create menus with the associated key.
An additional line is available for a title display.

4.2. SCREEN TYPE

The user page context (displayed information and keystrokes) can be associated to a variable of the screen type.
It is then easier to build and maintain several screens in an application, such as a production, a maintenance and
a debugging screen.

It is possible to easily switch from one screen to another by pressing ’User-Down’ or ’User-Up’. Pressing ’User-
Shift’ switches to the first screen, ’User-Shift’-Up’ to the last one.

The screen type takes a significant place in memory and can therefore not be used for local variables, unless the
size of runtime memory for the application has been significantly increased.

4.2.1. SELECTING THE USER SCREEN

The userPage() instruction can be specified an optional screen variable as parameter. The current screen
displayed on MCP switches then to the specified screen. If no screen parameter is specified, the current screen
switches to the default user screen that is always defined.

4.2.2. WRITING TO A USER SCREEN

The instructions to write on the screen (title(), gotoxy(), cls(), put(), putln()) can be specified an optional screen
variable as first parameter. The write operation is then done on the specified screen and does not affect the other
screens. The modified screen may not be the screen being displayed. In that case the changes remain hidden
until the current screen is changed with the userPage() instruction. If no screen parameter is specified, the
modified screen is the default user screen that is always defined.

4.2.3. READING FROM A USER SCREEN

The instructions to get keystrokes (get(), getKey(), isKeyPressed()) can be specified an optional screen variable
as first parameter. The input operation is then done on the specified screen: a keystroke can only be read by the
screen being displayed on MCP. Other screens will not be affected. It is therefore possible to have several different
screens waiting simultaneously for different keystrokes: only the current screen (being displayed) will be notified
of effective keystrokes. If no screen parameter is specified, the impacted screen is the default user screen that is
always defined.

© Stäubli 2010 – D28077104A VAL 370 / 191

4.3. INSTRUCTIONS

void userPage(), void userPage(screen scPage),
void userPage(bool bFixed)

Function
This instruction displays on the MCP screen the specified user page, if any, or the default user page.
If the parameter bFixed is true, only the user page is accessible for the operator, except for the profile changing
page that is accessible via the "Shift User" keyboard shortcut. When this page is displayed, it is possible to stop
the application using the "Stop" key if the current user profile authorizes the action.

If the parameter is false, the other MCP pages become accessible again.

void gotoxy(num nX, num nY),
void gotoxy(screen scPage, num nX, num nY)

Function
This instruction places the cursor at the (nX, nY) coordinates on the specified user page, if any, or on the default
user page. The coordinates of the top left-hand corner are (0,0) and those of the bottom right-hand corner are (39,
13).

The nX column number is taken modulo 40. The nY row number is taken modulo 14.

See also

void cls(), void cls(screen scPage)

void cls(), void cls(screen scPage)

Function
This instruction clears the specified, or the default user page and sets the cursor to (0,0).

See also
void gotoxy(num nX, num nY), void gotoxy(screen scPage, num nX, num nY)

void setTextMode(num nMode),
void setTextMode(screen scPage, num nMode)

Function
This instruction modifies the display mode of the specified screen, if any, or the default screen. The new display
mode does not affect the current display, but is applied to all new texts until a new text mode is defined. The
supported modes are defined hereafter:

See also
void put(string sText), void put(screen scPage, string sText) void put(num nValue), void put(screen
scPage, num nValue), void putln(string sText), void putln(screen scPage, string sText), void putln(num
nValue), void putln(screen scPage, num nValue),

0 standard text mode (black on white background)

1 inverse video mode (white on black background)

2 flashing standard text mode

3 flashing inverse video mode

VAL 3 © Stäubli 2010 – D28077104A 71 / 191

Chapter 4 - User interface

num getDisplayLen(string sText)

Function
This instruction returns the length of sText on MCP display (number of columns needed to display sText).

For ASCII strings, the length on display is the number of characters in the string; getDisplayLen() is then
identical to the len() instruction.

Some characters (Chinese) are displayed on two adjacent screen columns; getDisplayLen() is then greater than
sText length, and can be used to control sText alignment on screen.

See also
num len(string sText)

© Stäubli 2010 – D28077104A VAL 372 / 191

void put(string sText), void put(screen scPage, string sText)
void put(num nValue), void put(screen scPage, num nValue),

void putln(string sText), void putln(screen scPage, string sText),
void putln(num nValue), void putln(screen scPage, num nValue),

Function
This instruction displays the specified sText or nValue (to 3 decimal places) at the cursor position on the specified
user page, if any, or on the default user page. The cursor is then positioned on the character after the last character
of the message displayed (put instruction), or on the first character of the next line (putln instruction).

At the end of a line, the display continues on the following line.
At the end of a page, the user page display moves up one line.

See also
void popUpMsg(string sText)
bool logMsg(string sText)
void title(string sText), void title(screen scPage, string sText)

void title(string sText), void title(screen scPage, string sText)

Function
This instruction changes the title of the specified user page, if any, or on the default user page.

The title() instruction does not change the current cursor position.

num get(string& sText),num get(screen scPage, string& sText),
num get(num& nValue),num get(screen scPage, num& nValue),

num get(),num get(screen scPage)

Function
This instruction acquires a string, a number or a control panel key.

The parameter sText or nValue is displayed at the current cursor position and can be changed by the user. The
entry is completed by pressing a menu key or the Return or Esc keys.

The instruction returns the code of the key used to end the entry.

Pressing Return or a menu key updates the sText or nValue variable. Pressing Esc does not change the
variable.

If no parameter is passed, the get() instruction waits for the operator to press any key and returns the key code.
The key that has been pressed is not displayed.

In all cases, the current position of the cursor is unaffected by the get() instruction.

Without Shift With Shift
3 Caps Space 3 Caps Space

283 - 32 Move 283 - 32 Move

Ret.
-

Ret.
-

2 Shift Esc Help Run 2 Shift Esc Help Run

282 - 255 - 270 - 282 - 255 - 270 -

Menu Tab Up Bksp Stop Menu UnTab PgUp Bksp Stop

- 259 261 263 - - 260 262 263 -

1 User Left Down Right 1 User Home PgDn End

281 - 264 266 268 281 - 265 267 269

VAL 3 © Stäubli 2010 – D28077104A 73 / 191

Chapter 4 - User interface

Menus (with or without Shift)

For standard keys, the code returned is the ASCII code of the corresponding character:

Example
This program reads a numeric value validated with the Return key:

do
nKey = get (nValue)

until (nKey == 270)

See also
num getKey(), num getKey(screen scPage)

F1 F2 F3 F4 F5 F6 F7 F8
271 272 273 274 275 276 277 278

Without Shift
q w e r t y u i o p

113 119 101 114 116 121 117 105 111 112
a s d f g h j k l <

97 115 100 102 103 104 106 107 108 60
z x c v b n m . , =

122 120 99 118 98 110 109 46 44 61

With Shift
7 8 9 + * ; () []

55 56 57 43 42 59 40 41 91 93
4 5 6 - / ? : ! { }

52 53 54 45 47 63 58 33 123 125
1 2 3 0 " % - . , >

49 50 51 48 34 37 95 46 44 62

With double Shift
Q W E R T Y U I O P
81 87 69 82 84 89 85 73 79 80
A S D F G H J K L }
65 83 68 70 71 72 74 75 76 125
Z X C V B N M $ \ =
90 88 67 86 66 78 77 36 92 61

© Stäubli 2010 – D28077104A VAL 374 / 191

num getKey(), num getKey(screen scPage)

Function
This instruction acquires a keystroke from the control panel keyboard. It returns the code of the last key pressed
since the last getKey() call, or -1 if no key has been pressed since then. A keystroke can only be detected when
the specified user page, if any, or the default user page is displayed.

Unlike the get() instruction, getKey() returns immediately.

The key pressed is not displayed and the current cursor position remains unchanged.

Example
This program refreshes the display of the system clock until a key is pressed:

// First reset the code of the last key pressed
getKey()
while(getKey()== -1)

gotoxy(0,0)
put(toString("", clock()* 10))
delay(0)

endWhile

See also
num get(string& sText),num get(screen scPage, string& sText), num get(num& nValue),num get(screen
scPage, num& nValue), num get(),num get(screen scPage), void userPage(), void userPage(screen
scPage), void userPage(bool bFixed)
bool isKeyPressed(num nCode), bool isKeyPressed(screen scPage, num nCode)

bool isKeyPressed(num nCode),
bool isKeyPressed(screen scPage, num nCode)

Function
This instruction returns the status of the key specified by its code (see get()), true if the key is pressed, otherwise
false. A keystroke can only be detected when the specified user page, if any, or the default user page is displayed,
except for the keys (1), (2) and (3) that are always detected.

See also
num get(string& sText),num get(screen scPage, string& sText), num get(num& nValue),num get(screen
scPage, num& nValue), num get(),num get(screen scPage), void userPage(), void userPage(screen
scPage), void userPage(bool bFixed)

void popUpMsg(string sText)

Function
This instruction displays sText in a "popup" window above the current MCP window. This window remains
displayed until it is confirmed by clicking on Ok in the menu or pressing the Esc key.

See also
void userPage(), void userPage(screen scPage), void userPage(bool bFixed)
void put(string sText), void put(screen scPage, string sText) void put(num nValue), void put(screen
scPage, num nValue), void putln(string sText), void putln(screen scPage, string sText), void putln(num
nValue), void putln(screen scPage, num nValue),

VAL 3 © Stäubli 2010 – D28077104A 75 / 191

Chapter 4 - User interface

bool logMsg(string sText)

Function
This instruction writes sText in the system history (error log). The message is saved with the current date and time.
"USR" is added to the beginning of the string to label it as a user message. Some log messages may be lost if
many messages are logged in the same second. The instruction returns then false so that the messages are
logged later, if this is of importance.

Example
This program makes sure that the message is logged:

while logMsg(sMessage)==false
delay(0)
endWhile

See also
void popUpMsg(string sText)

string getProfile()

Function
This instruction returns the name of the current user profile.

See also
num setProfile(string sUserLogin, string sUserPassword)

num setProfile(string sUserLogin, string sUserPassword)

Function
This instruction changes the current user profile (immediate effect).

The function returns:

0: The specified user profile is now effective

-1: The specified user profile is not defined

-2: The specified user password is not correct

-3: ’staubli’ is not allowed as user profile with this instruction

-4: The current user profile is ’staubli’ and cannot be changed with this instruction

See also
string getProfile()

© Stäubli 2010 – D28077104A VAL 376 / 191

string getLanguage()

Function
This instruction returns the current language of the robot controller.

Example

switch(getLanguage())
 case "francais"

sMessage="Attention!"
 break
 case "english"
 sMessage="Warning!"
 break
 case "deutsch"
 sMessage="Achtung!"
 break
 case "italiano"

sMessage="Avviso!"
 break
 case "espanol"

sMessage="¡Advertencia!"
 break
 default

sMessage="Warning!"
 break
endSwitch

See also
bool setLanguage(string sLanguage)

VAL 3 © Stäubli 2010 – D28077104A 77 / 191

Chapter 4 - User interface

bool setLanguage(string sLanguage)

Function
This instruction modifies the current language of the robot controller: the specified language name sLanguage
must match the name of a translation file on the controller. Refer to controller's manual to remove, or install
additional languages on the robot controller.

Example
This program switches the robot language to Chinese:

if(setLanguage("chinese")==false)
 putln("The Chinese language is not available on the robot controller")
endIf

See also
string getLanguage()

string getDate(string sFormat)

Function
This instruction returns the current date and/or time of the robot controller. The sFormat parameter specifies the
format for the returned date. In this string, each occurrence of some keywords is replaced with the corresponding
date or time value. The supported format keywords are listed in the table below:

Example
This program displays date and hour in the format "January 01, 2007 13:45:23"

switch (getDate("%m"))
 case "01"
 sMonth="January"
 break
 case "02"
 sMonth="February"
 break
 case "03"
 sMonth="March"
 break
 case "04"
 sMonth="April"
 break
 case "05"
 sMonth="May"
 break
 case "06"
 sMonth="June"
 break

Keyword Description
%y 2-digits year (00-99), without century

%Y 4-digits year such as 2007
%m Month (00-12)
%d Day (00-31)
%H Hour in 24-hour format (00-23)
%I Hour in 12-hour format (01-12)
%p A.M./P.M. indicator for 12-hour clock

%M Minute (00-59)
%S Seconds (00-59)

© Stäubli 2010 – D28077104A VAL 378 / 191

 case "07"
 sMonth="July"
 break
 case "08"
 sMonth="August"
 break
 case "09"
 sMonth="September"
 break
 case "10"
 sMonth="October"
 break
 case "11"
 sMonth="November"
 break
 case "12"
 sMonth="December"
 break
 default
 sMonth="???"
 break
endSwitch

 // Display date and date in the form: "January 01, 2007 13:45:23"
 putln(getDate(sMonth+" %d, %Y %H:%M:%S"))

VAL 3 © Stäubli 2010 – D28077104A 79 / 191

Chapter 5 - Tasks

CHAPTER 5

TASKS

© Stäubli 2010 – D28077104A VAL 380 / 191

VAL 3 © Stäubli 2010 – D28077104A 81 / 191

Chapter 5 - Tasks

5.1. DEFINITION

A task is a program that is running. An application can and usually will have several tasks running.

An application typically contains an arm movement task, an automation task, a user interface task, a safety signal
monitoring task, communication tasks, etc..

A task is defined by the following elements:

• a name: a task identifier that is unique in the library or application
• a priority, or a period: a task sequencing parameter
• a program: the task entry (and exit) point
• a status: running or stopped
• the next instruction to be executed (and its context)

5.2. RESUMING AFTER A RUNTIME ERROR

When an instruction causes a runtime error, the task is stopped. The taskStatus() instruction is used to diagnose
the runtime error. The task can then be resumed via the taskResume() instruction. If the runtime error can be
corrected, the task can resume from the instruction line where it was stopped. Otherwise, it must be restarted
from before or after that instruction line.

Starting and stopping the application
When an application starts, its start() program is executed in a task with the name of the application followed by
’~’, and with priority 10.

When an application stops, its stop() program is executed in a task with the name of the application preceded by
’~’, priority 10.

If a VAL 3 application is stopped via the MCP user interface, the start task, if it still exists, is immediately
destroyed. The stop() program is run next, then any remaining application tasks are deleted in the reverse order
to that in which they were created, and finally libraries are unloaded from the memory.

5.3. VISIBILITY

A task is visible only from within the program or library that created it. The instructions taskSuspend(),
taskResume(), taskKill() and taskStatus() act on a task created by another library as if the task was not
created. Two different libraries may therefore create tasks with the same name.

© Stäubli 2010 – D28077104A VAL 382 / 191

5.4. SEQUENCING

When several tasks of an application are running, they appear to run concurrently and independently. This is true
if the whole application is observed over a sufficiently long period of time (about a second), but not true if its
specific behaviour is examined over a short period of time.

In fact, as the system has only one processor, it can only execute one task at a time. Simultaneous execution is
simulated by very fast sequencing of the tasks that execute a few instructions in turn before the system moves on
to the next task.

Sequencing

VAL 3 task sequencing obeys the following rules:

1. The tasks are sequenced in the order in which they were created
2. During each sequence, the system attempts to execute a number of VAL 3 instruction lines corresponding

to the priority of the task.
3. When an instruction line cannot be terminated (runtime error, waiting for a signal, task stopped, etc.) the

system moves on to the next VAL 3 task.
4. When all VAL 3 tasks have been completed, the system keeps some free time for lower priority system

tasks (such as network communication, user screen refresh, file access), before a new cycle is started.
The maximum delay between two sequential cycles is equal to the duration of the last sequencing cycle;
but, most of the time, this delay is null because the system does not need it.

The VAL 3 instructions that can cause a task to be sequenced immediately are as follows:
• watch() (condition wait timeout)
• delay() (timeout)
• wait() (condition waiting time)
• waitEndMove() (arm stop waiting time)
• open() and close() (arm stop waiting time followed by timeout)
• get() (keystroke waiting time)
• taskResume() (waits until the task is ready for restart)
• taskKill() (waits for the task to be actually killed)
• disablePower() (waits for power to be actually cut off)
• The instructions accessing the contents of the disk (libLoad, libSave, libDelete, libList, setProfile)
• The sio reading/writing instructions (operator =, sioGet(), sioSet())
• setMutex() (waits for the Boolean mutex to be false)

VAL 3 © Stäubli 2010 – D28077104A 83 / 191

Chapter 5 - Tasks

5.5. SYNCHRONOUS TASKS

The sequence described above is the sequence of normal tasks, called asynchronous tasks, that are scheduled
by the system so that they execute as fast as possible. It is sometimes necessary to schedule tasks at regular
periods of time, for data acquisition or device control: such tasks are called synchronous tasks.

They are executed in the sequencing cycle by interrupting the current asynchronous task between two VAL 3
lines. When the synchronous tasks have finished, the asynchronous task resumes.

The sequencing of the VAL 3 synchronous tasks obeys the following rules:

1. Each synchronous task is sequenced exactly once per period of time specified at the task creation (for
instance, once every 4 ms).

2. At each sequence, the system executes up to 3000 VAL 3 instruction lines. It shifts to the next task when
an instruction line cannot be completed immediately (runtime error, waiting for a signal, task stopped, ...).
In practice, a synchronous task is often explicitly ended by using the "delay(0)" instruction to force the
sequencing of the next task.

3. The synchronous tasks with same period are sequenced in the order in which they were created.

5.6. OVERRUN

If the execution of a VAL 3 synchronous task takes longer than the specified period, the current cycle ends
normally, but the next cycle is cancelled. This overrun error is signalled to the VAL 3 application by setting the
Boolean variable specified for this purpose at the task creation to "true". At the beginning of each cycle this
Boolean variable thus shows whether the previous sequencing was carried out entirely or not.

5.7. INPUTS / OUTPUTS REFRESH

Inputs are refreshed before both the synchronous tasks and the asynchronous tasks are executed. In the same
way, outputs are refreshed after both the synchronous tasks and the asynchronous tasks are executed.

WARNING:
It is not possible to specify which inputs / outputs are used by one task. As a
consequence, each refresh is performed on all inputs / outputs.
The refresh of inputs / outputs on Modbus, BIO board, MIO board, CIO board or AS-i
bus are not controlled by the VAL 3 scheduler. They can be refreshed at any time during
the sequencing of a VAL 3 task.

© Stäubli 2010 – D28077104A VAL 384 / 191

5.8. SYNCHRONIZATION

It is sometimes necessary to synchronize several tasks before they are executed.

If the amount of time required to execute each of the tasks is known beforehand, they can be synchronized by
simply waiting for a signal generated by the slowest task. However, if it is not known which task is the slowest, it
is necessary to use a more complex synchronizing mechanism for which an example of VAL 3 programming is
shown below.

Example
// Synchronization program for N tasks
The program synchro(num& n, bool& bSynch, num nN) hereafter must be called in each task to synchronize.

The variable n must be initialized to 0, bSynch to false, and nN to the number of tasks to synchronize.

begin
 n = n + 1
 // Task synchronization waiting instruction
 // makes sure all tasks are waiting here to resume operation
 wait((n==nN) or (bSynch==true))
 bSynch = true
 n = n - 1
 // Task release waiting instruction
 // makes sure all tasks have resumed operation to clear synch context
 wait((n==0) or (bSynch == false))
 bSynch = false
end

VAL 3 © Stäubli 2010 – D28077104A 85 / 191

Chapter 5 - Tasks

5.9. SHARING RESOURCES

When several tasks use the same system or cell resource (global datas, screen, keyboard, robot, etc.). it is
important to ensure that there is no conflict between them.

A mutual exclusion (’mutex’) mechanism that protects a resource by allowing it to be accessed by only one task
at a time can be used for this purpose. An example of mutex programming in VAL 3 is shown below.

Example
This program display (num c) fills the screen with the same chars, making sure no other task is writing to the
screen with the same program at the same time. bScreen must be initialized to false.

begin
 // make sure only one task accesses the screen at one time
 setMutex(bScreen)
 c=c%10
 // fill the screen with chars
 for y=0 to 13
 gotoxy(x,y)
 put(c)
 endFor
 endFor
 // wait for screen refresh
 delay(0.2)
 // let other tasks access the screen now
 bScreen=false
end

© Stäubli 2010 – D28077104A VAL 386 / 191

5.10. INSTRUCTIONS

void taskSuspend(string sName)

Function
This instruction suspends the execution of the sName task.

If the task is already STOPPED, the instruction has no effect.

A runtime error is generated if sName does not correspond to any VAL 3 task, or corresponds to a VAL 3 task
created by another library.

See also
void taskResume(string sName, num nSkip)
void taskKill(string sName)

void taskResume(string sName, num nSkip)

Function
This instruction resumes the execution of the sName task on the line located nSkip instruction lines before or after
the current line.

If nSkip is negative, the program resumes before the current line. If the task status is not STOPPED, the
instruction has no effect.

A runtime error is generated if sName does not correspond to a VAL 3 task, corresponds to a VAL 3 task created
by another library, or if there is no instruction line at the specified nSkip.

See also
void taskSuspend(string sName)
void taskKill(string sName)

VAL 3 © Stäubli 2010 – D28077104A 87 / 191

Chapter 5 - Tasks

void taskKill(string sName)

Function

This instruction suspends and then deletes the sName task. When the instruction has been executed, the sName
task is no longer present in the system.

If there is no sName task, or if the sName task was created by another library, the instruction has no effect.

See also
void taskSuspend(string sName)
void taskCreate string sName, num nPriority, program(...)

void setMutex(bool& bMutex)

Function
This instruction waits for the bMutex variable to be false, then set it to true.

This instruction is required to use a Boolean variable as a mutual exclusion mechanism for protecting shared
resources (see chapter 5.9).

string help(num nErrorCode)

Function
This instruction returns the description of the task runtime error code specified with the nErrorCode parameter.
The description is given in the current controller's language.

Example
This program checks if the "robot" task is in error, and displays the error code to the operator if any.

nErrorCode=taskStatus("robot")
if (nErrorCode > 1)
 gotoxy(0,12)
 put(help(nErrorCode))
endIf

© Stäubli 2010 – D28077104A VAL 388 / 191

num taskStatus(string sName)

Function
This instruction returns the current status of the sName task, or the task runtime error code if the latter is in error
condition:

See also
void taskResume(string sName, num nSkip)
void taskKill(string sName)

Code Description
-1 There is no task sName created by the current library or application
0 The task sName is suspended without runtime error (taskSuspend() instruction or debug mode)
1 The task sName created by the current library or application is running
10 Invalid numerical calculation (division by zero).
11 Invalid numerical calculation (e.g.ln(-1))
20 Access to an array with an index that is larger than the array size.
21 Access to an array with a negative index.
29 Invalid task name. See taskCreate() instruction.
30 The specified name does not correspond to any VAL 3 task.
31 A task with the same name already exists. See taskCreate instruction.
32 Only 2 different periods for synchronous tasks are supported. Change scheduling period.
40 Not enough memory space available.
41 Not enough memory space to run the task. See the run memory size.
60 Maximum instruction run time exceeded.
61 Internal VAL 3 interpreter error
70 Invalid instruction parameter. See the corresponding instruction.
80 Uses data or a program from a library not loaded in the memory.
81 Incompatible kinematic: Use of a point/joint/config that is not compatible with the arm kinematic.

82 The reference frame or tool of a variable belongs to a library and is not accessible from the variable's
scope (library not declared in the variable's project, or reference variable is private).

90 The task cannot resume from the location specified. See taskResume() instruction.
100 The speed specified in the motion descriptor is invalid (negative or too great).
101 The acceleration specified in the motion descriptor is invalid (negative or too great).
102 The deceleration specified in the motion descriptor is invalid (negative or too great).
103 The translation velocity specified in the motion descriptor is invalid (negative or too great).
104 The rotation velocity specified in the motion descriptor is invalid (negative or too great).
105 The reach parameter specified in the movement descriptor is invalid (negative).
106 The leave parameter specified in the movement descriptor is invalid (negative).
122 Attempt to write in a system input.
123 Use of a dio, aio or sio input/output not connected to a system input/output.
124 Attempt to access a protected system input/output
125 Read or write error on a dio, aio or sio (field bus error)

150 Cannot run this movement instruction: a previous movement request could not be completed (point out
of reach, singularity, configuration problem, etc.)

153 Movement command not supported
154 Invalid movement instruction: target out of reach, or check the movement descriptor.
160 Invalid flange tool coordinates
161 Invalid world tool coordinates
162 Use of a point without a reference frame. See Definition.
163 Use of a frame without a reference frame. See Definition.
164 Use of a tool without reference tool. See Definition.
165 Invalid frame or reference tool (global variable linked to a local variable)
250 No runtime licence for this instruction, or demo licence is over.

VAL 3 © Stäubli 2010 – D28077104A 89 / 191

Chapter 5 - Tasks

void taskCreate string sName, num nPriority, program(...)

Function
This instruction creates and starts up the sName task.
sName must contain 1 to 15 characters selected from "a..zA..Z0..9_". There must not be another task with the
same name created by the same library.
Execution of sName begins with a call to program using the parameters specified. It is not possible to use a local
variable for a parameter passed by reference, to make sure that the variable is not deleted before the task is
completed.
The task ends by default with the last instruction line of program, or earlier, if it is deleted explicitly.
nPriority must be between 1 and 100. When the task is sequenced, the system executes a number of instruction
lines corresponding to the nPriority, or fewer if a blocking instruction is encountered (see the chapter entitled
Sequencing).
A runtime error is generated if the system does not have enough memory to create the task, if sName is not valid
or already in use in the same library, or if nPriority is not valid.

Example
// start a new task to read a message
taskCreate "t1", 10, read(sMessage)
// waits for the end of task t1
wait(taskStatus("t1") == -1)
// Use the message
putln(sMessage)

See also
void taskSuspend(string sName)
void taskKill(string sName)
num taskStatus(string sName)

© Stäubli 2010 – D28077104A VAL 390 / 191

void taskCreateSync string sName, num nPeriod, bool& bOverrun,
program(...)

Function
This instruction creates and starts a synchronous task.
The execution of the task starts with the call of the specified program with the specified parameters. It is not
possible to use a local variable for a parameter passed by reference, to make sure that the variable is not deleted
before the task is completed.
A runtime error is generated if the system doesn't have enough memory to create the task, or if one or more
parameters are invalid.
For a detailed description of synchronous tasks (see chapter 5.5).

Parameters

Example
// Create a supervisor task scheduled every 20 ms
taskCreateSync "supervisor", 0.02, bSupervisor, supervisor()

string sName Name of the task to create. It must contain 1 to 15 characters selected from
"_a..zA..Z0..9". There cannot be another task with the same name belonging to the
same application or library.

num nPeriod Period of the task to create (s). The specified value is rounded down to a multiple of
4 ms (0.004 seconds). Any positive period is supported, but the system supports
only two different periods of synchronous tasks at the same time.

bool& bOverrun Boolean variable to signal overrun errors. Only global variables are supported, to
make sure that the variable is not deleted before the task.

program Name of the VAL 3 program to call when the task is started, with its parameters
between parenthesis.

VAL 3 © Stäubli 2010 – D28077104A 91 / 191

Chapter 5 - Tasks

void wait(bool bCondition)

Function
This instruction puts the current task on hold until bCondition is true.
The task remains RUNNING during the waiting time. If bCondition is true at the first evaluation, the task in
question is executed immediately (the next task is not sequenced).

See also
void delay(num nSeconds)
bool watch(bool bCondition, num nSeconds)

void delay(num nSeconds)

Function
This instruction puts the current task on hold for nSeconds.
The task remains RUNNING during the waiting time. If nSeconds is negative or null, the system sequences the
next VAL 3 task immediately.

Example

This program loops to get a key, taking care not to use unnecessary CPU ressource:

// First reset the code of the last key pressed
getKey()
while(getKey()== -1)
 gotoxy(0,0)
 put(toString("", clock()* 10))
 // let another task perform its operation immediately
 delay(0)
endWhile

See also
num clock()
bool watch(bool bCondition, num nSeconds)

© Stäubli 2010 – D28077104A VAL 392 / 191

num clock()

Function
This instruction returns the current value of the internal system clock expressed in seconds.

The internal system clock is accurate to within one millisecond. It is initialized at 0 when the controller is started
up and is thus unrelated to calendar time.

Example
To compute the execution delay between two instructions, store the clock value before the first instruction:

 nStart=clock()

After the last instruction, compute the execution delay with:

 nDelay = clock()-nStart

See also
void delay(num nSeconds)
bool watch(bool bCondition, num nSeconds)

bool watch(bool bCondition, num nSeconds)

Function
This instruction puts the current task on hold until bCondition is true or nSeconds seconds have elapsed.

Returns true if the waiting time ends when bCondition is true, otherwise returns false when the waiting time
ends because the time has expired.

The task remains RUNNING during the waiting time. If bCondition is true at the first evaluation, the same task is
executed immediately, otherwise the system sequences the other VAL 3 tasks (even if nSeconds is up to and
including 0).

Example
This program waits for a signal and displays an error message after 20 s.

if (watch (diSignal==true, 20)) == false
 popUpMsg("Error: waiting for Signal")
 wait(diSignal==true)
endIf

See also
void delay(num nSeconds)
void wait(bool bCondition)
num clock()

VAL 3 © Stäubli 2010 – D28077104A 93 / 191

Chapter 6 - Libraries

CHAPTER 6

LIBRARIES

© Stäubli 2010 – D28077104A VAL 394 / 191

VAL 3 © Stäubli 2010 – D28077104A 95 / 191

Chapter 6 - Libraries

6.1. DEFINITION

A VAL 3 library is a VAL 3 application that has variables or programs that can be reused by another application
or by other VAL 3 libraries.
Being a VAL 3 application, a VAL 3 library comprises the following components:

- a set of programs: the VAL 3 instructions to be executed
- a set of global variables: the library data
- a set of libraries: the external instructions and variables used by the library

When a library is being run, it can also contain:
- a set of tasks: The programs that are specific to the library being run

All applications can be used as a library and all libraries can be used as an application, if the start() and stop()
programs are defined in them.

6.2. INTERFACE

A library's global programs and variables are either public or private. Only global programs and variables that are
public are accessible outside the library. Private programs and global variables can only be used by the library
programs.
All the public global programs and variables from a library form its interface: a number of different libraries can
have the same interface, as long as their public programs and variables use the same names.
The tasks created by a library program are always private, i.e. they can only be accessed by that library.

6.3. INTERFACE IDENTIFIER

To use a library, an application needs to first declare an identifier assigned to it, and then request, in a program,
that the library be loaded into the memory under that identifier.
The identifier is assigned to the library interface and not to the library itself. Any library presenting the same
interface can then be loaded under that identifier. This mechanism can be used, for example, to define a library
for every possible part of an application, and then load only the part currently being processed by each cycle.

6.4. CONTENT

A library does not have any required content: it can contain only programs, or only variables, or both.

Library content is accessed by writing the identifier's name followed by ’:’ in front of the name of the library
program or data, for example:

// Load the "article_7" library under the "article" identifier
article:libLoad("article_7")
// Display as title the content of the 'sName' variable of the article_7 library
title(article:sName)
// Call the init() program for the current article
call article:init()

Accessing the content of a library that has not yet been loaded into the memory causes a runtime error.

6.5. ENCRYPTION

VAL 3 supports encrypted libraries, based on the widely used ZIP compression & encryption tools.

© Stäubli 2010 – D28077104A VAL 396 / 191

An encrypted library is a standard ZIP file of the content of the library directory (caution: advanced 128-bit and
256-bit AES encryption is not supported). The name of the zip file must have the '.zip' extension and have less
than 15 characters (including extension). To have a robust encryption, the ZIP password should have more than
10 characters and should not be found in a dictionary.

Secret password, public password

The VAL 3 interpreter must have access to the secret ZIP password to load an encrypted library; for this, a PC
tool is provided with Stäubli Robotics Suite to encode the secret ZIP password into a public VAL 3 password.
The public VAL 3 password makes it possible to use the encrypted library in a VAL 3 program. But the library
content remains secret because the ZIP password cannot be computed from the VAL 3 password.

Project encryption

It is not possible to directly encrypt the start application on the controller. A complete application can be
encrypted by:

- Declaring its start() program as public.

- Creating another application that simply loads the encrypted application as a library and calls its start() program.

VAL 3 © Stäubli 2010 – D28077104A 97 / 191

Chapter 6 - Libraries

6.6. LOADING AND UNLOADING

When a VAL 3 application is opened, all the libraries declared are analysed to build the corresponding interfaces.
This step does not load the libraries into the memory.

When a library is loaded, its global datas are initialized and its programs checked to detect any syntax errors.
When several different library identifiers load the same library on disk, they share the same library in memory.
The library is then loaded only once and reused by all identifiers. In the example below, lib1 and lib2 use the
same data in memory.

lib1:libLoad("appData")
lib1:sText = "lib1"
lib2:libLoad("appData")
// The change on lib2:sText applies here also to lib1:sText
lib2:sText = "lib2"

It is not necessary to unload a library, this is done automatically when the application ends, or when a new library
is loaded to replace another one.

When a VAL 3 application is stopped via the MCP user interface, the stop() program is run first, then all the
application tasks, and its libraries, if any are left, are destroyed.

Access path
The libLoad(), libSave() and libDelete() instructions use a library access path, specified as a character string.
An access path comprises an (optional) root, an (optional) path and a library name, in the following format:

root://Path/Name
The root specifies the file medium: "Floppy" for a diskette, "USB0" for a device on a USB port (stick, floppy
disk), "Disk" for the controller's flash disk, or the name of an Ftp connection defined on the controller for a
network access.
By default, the root is "Disk" and the path is blank.

Example
// load library "article_1" on Disk Equivalent to"Disk://article_1"
article:libLoad("article_1")
// Save library on USB device
article:libSave("USB0://articles/article_1")
// Load the default article defined within the current application
article:libLoad("./defaultArticle")

Error codes
The VAL 3 library handling functions never generate runtime errors but they send back an error code used to
check the instruction result and troubleshoot any problems that may arise.

CAUTION:
Circular references between libraries are not supported. If library A uses library B, library B
cannot use library A.

© Stäubli 2010 – D28077104A VAL 398 / 191

Code Description

0 No error

10 The library identifier has not been initialized by libLoad().

11 Library loaded, but public interface does not match. A runtime error 80 will result if the VAL 3
program tries to access missing items. See libExist instruction or libExist instructions.

12 Cannot load the library: the library contains invalid data or programs, or, for an encrypted
library, the specified password is not correct.

13 Cannot unload the library: The library is being used by another task.

14 Cannot unload the library: The library owns a running VAL 3 task. All tasks created by VAL 3
programs from the library must be completed before the library is unloaded.

20 File access error: invalid path root.

21 File access error: invalid path.

22 File access error: invalid name.

23 Encrypted library expected. Library is not or badly encrypted.

>=30 File reading/writing error.

31 Cannot save the library: the path specified already contains a library. To replace a library on
disk, first delete it with libdelete().

32 Driver reports "Device not found"

33 Driver reports "Device error"

34 Driver reports "Device timeout"

35 Driver reports "Device write protected"

36 Driver reports "Disk not present"

37 Driver reports "Disk not formatted"

38 Driver reports "Disk full"

39 Driver reports "File not found"

40 Driver reports "Read only file"

41 Driver reports "Connection refused"

42 Driver reports "Ftp server does not answer"

43 Driver reports "Ftp kernel error"

44 Driver reports "Ftp parameters error"

45 Driver reports "Ftp access error"

46 Driver reports "Ftp disk full"

47 Driver reports "Invalid Ftp user login"

48 Driver reports "Ftp connection not defined"

VAL 3 © Stäubli 2010 – D28077104A 99 / 191

Chapter 6 - Libraries

6.7. INSTRUCTIONS

num identifier:libLoad(string sPath)

num identifier:libLoad(string sPath, string sPassword)

Function
This instruction initializes the library identifier by loading the library program and variables into the memory
following the specified sPath. The specified (optional) sPassword parameter is used as decryption key for
encrypted libraries. The specified sPassword must be the public VAL 3 password computed from the secret ZIP
password of the encrypted library (see chapter 6.5, page 95) .

The instruction returns 0 after successful loading, a library loading error code if there are still tasks running that
were created by the library, if the library access path is invalid, if the library contains syntax errors or if the library
specified does not correspond to the interface declared for the identifier.

See also
num identifier:libSave(), num libSave()

num identifier:libSave(), num libSave()

Function
This instruction saves the variables and programs assigned to the library's identifier. If libSave() is called without
an identifier, the application containing the libSave() instruction is saved. If a parameter is specified, the content
is saved via the specified sPath. Otherwise, the content is saved via the path specified on loading.

The instruction returns 0 if the content has been saved, an error code if the identifier has not been initialized, if
the path is invalid, if a writing error occurs or if the path specified already contains a library.

See also
num libDelete(string sPath)

num libDelete(string sPath)

Function
This instruction deletes the library located in the specified sPath.

The instruction returns 0 if the specified library does not exist or has been deleted, and an error code if the identifier
has not been initialized, if the path is invalid or if a writing error occurs.

See also
num identifier:libSave(), num libSave()
string identifier:libPath(), string libPath()

CAUTION:
Some devices such as the controller's flash disk support only a limited number of write
access. If a frequent use of libSave() is made in a program (once or more every minute),
it must be made on a device supporting it.

© Stäubli 2010 – D28077104A VAL 3100 / 191

string identifier:libPath(), string libPath()

Function
This instruction returns the access path of the library associated with the identifier, or that of the calling
application if no identifier is specified.

See also
bool libList(string sPath, string& sContents[])

bool libList(string sPath, string& sContents[])

Function
This instruction lists the contents of the specified sPath path in the sContents array. Returns true if the
sContents array lists the full result, and false if the array is too small to hold the full list.

All elements of the sContents array are first initialized to "" (empty string). After libList() is executed, the end of
the list is therefore found by searching the first empty string in the sContents array.
If sContents is a global variable, the size of the array is automatically enlarged as required to enable storage of
the full result.

See also
string identifier:libPath(), string libPath()

bool identifier:libExist(string sSymbolName)

Function
The libExist instruction tests whether a symbol (a global data or program) is defined in a library. It returns true if
the symbol exists and is accessible (public), else false.

The symbol name for a program must be appended with "()": "mySymbol" denotes a data name, whereas
"mySymbol()" denotes a program name.

The libExist instruction is useful to test if an input/output is defined on a controller; it is also helpful to handle the
evolution of a library's interface, and adapt its use depending if it is a newer or older version of the interface.

Example
This example tests the interface of a library.

// Load part library
nLoadCode = part:libLoad(sPartPath)
// part:sVersion was not defined in the first version of the library
// Test if this library defines it
if (nLoadCode==0) or (nLoadCode==11)
 if (part:libExist("sVersion")==false)
 // initial version
 sLibVersion = "v1.0"
 else
 sLibVersion = part:sVersion
 endIf
endIf

This program calls the 'init' program of the 'protocol' library, if any:

if(protocol:libExist("init()")==true)
 call protocol:init()
endIf

See also
bool isDefined(*)

VAL 3 © Stäubli 2010 – D28077104A 101 / 191

Chapter 7 - User type

CHAPTER 7

USER TYPE

© Stäubli 2010 – D28077104A VAL 3102 / 191

VAL 3 © Stäubli 2010 – D28077104A 103 / 191

Chapter 7 - User type

7.1. DEFINITION

A user type is a structured type defined within a VAL 3 application, where it can be used as a standard type. A
user type combines simple, structured or even other user types into a new data type. User types increase the
abstraction level of programs and make them easier to understand, develop and maintain. They require however
a higher initial design effort to identify the adequate types that best fit the application constraints.

A user type is a set of fields, where each field consists in:

• a name: a character string

• a data type (simple, structured, or user type)

• a data container (element, array or collection)

• a default set of values

The fields of the VAL 3 standard types always use an element container (with a single value). The fields of user
types may use array or collection container and therefore contain several values. The default value for the field
defines the default number of elements in the field container, and for each of these elements, its default value. In
a variable defined with a user type, you may change at any time not only the values of its fields, but also the
number of elements of the field containers.

7.2. CREATION

The fields of a user type have the same characteristics than the global data of a VAL 3 application. This is why the
creation of a new user type just consists in selecting a VAL 3 application and associating it with a name.

• The set of the public global data in the selected application defines the set of the user type's fields, with their
default value.

• The name defines the name to be used for the new user type in the application where it is defined.

The private data and the programs of the application used as type definition are ignored in the user type.

Once a new user type is defined in an application, it is possible to create data of this type. The resulting application
can then also be used as type definition.

7.3. USE

The fields of a user type variable can be accessed using a ’.’ followed by the field name: userVariable.field1.field2
refers to the value of the 'field2' field of the 'field1' field of the data userVariable. The creation or deletion of
elements in a field container are supported like for a variable, with the insert(), delete(), append() or resize()
instructions. When a new element is created, each field is assigned a default value consisting in the elements and
their values defined in the application used as type definition.

The ’=’ operator is always defined between two variables of the same user type. After the ’=’ operator is executed,
the left variable is a copy of the right variable: the fields have the same number of elements in their container, and
the elements the same value.

CAUTION:
The fields of type point, tool or frame are not linked by default.

© Stäubli 2010 – D28077104A VAL 3104 / 191

VAL 3 © Stäubli 2010 – D28077104A 105 / 191

Chapter 8 - Robot control

CHAPTER 8

ROBOT CONTROL

© Stäubli 2010 – D28077104A VAL 3106 / 191

VAL 3 © Stäubli 2010 – D28077104A 107 / 191

Chapter 8 - Robot control

This chapter lists the instructions that allow access to the status of the various parts of the robot.

8.1. INSTRUCTIONS

void disablePower()

Function
This instruction cuts off the power supply to the arm and waits until the power supply has actually been cut off.

If the arm is moving, it stops abruptly on its trajectory before the power is switched off.

See also
void enablePower()
bool isPowered()

void enablePower()

Function
In remote mode, this instruction switches the arm power on.

This instruction does not have any effects in local, manual or test modes, or when the power supply is being
switched off. It does generate a message in the log, so avoid repeated undelayed attempts to enable power.

Example
// Switches on the power and waits for the arm power to be switched on
enablePower()
 if(watch(isPowered(), 5) == false)
 putln("Arm power supply cannot be switched on")
endIf

See also
void disablePower()
bool isPowered()

bool isPowered()

Function
This instruction returns the power status of the arm:

true: the arm is under power

false: the arm power is switched off, or is being switched on

© Stäubli 2010 – D28077104A VAL 3108 / 191

bool isCalibrated()

Function
This instruction returns the calibration status of the robot:

true: all the robot axes are calibrated

false: at least one robot axis is not calibrated

num workingMode(), num workingMode(num& nStatus)

Function
This instruction returns the current working mode of the robot:

Mode Status Working mode Status

0 0 Invalid or transitional -

1

0

Manual

Programmed movement
1 Connection movement
2 Joint jogging
3 Cartesian (Frame jogging)
4 Tool jogging
5 To point (Point jogging)
6 Hold

2
0

Test

Programmed movement (< 250 mm/s)
1 Connection movement (< 250 mm/s)
2 Fast programmed movement (> 250 mm/s)
3 Hold

3
0

Local
Move (programmed movement)

1 Move (connection movement)
2 Hold

4
0

Remote
Move (programmed movement)

1 Move (connection movement)
2 Hold

VAL 3 © Stäubli 2010 – D28077104A 109 / 191

Chapter 8 - Robot control

num esStatus()

Function
This instruction returns the status of the E-Stop circuit:

See also
num workingMode(), num workingMode(num& nStatus)
bool safetyFault(string& sSignalName)

bool safetyFault(string& sSignalName)

Function
This instruction returns true if a hardware fault on the safety chain must be fixed and acknowledge. In that case,
sSignalName is updated with the name of the faulty signal.

See also
num esStatus()

num ioBusStatus(string& sErrorDescription[])

Function
This instruction checks the status of the field bus devices and returns the number of devices in error, zero if no
device is in error. For each device in error, a text description is added in the sErrorDescription string array. The
format of the error description is: ‘statusValue:deviceName\moduleName’.

If sErrorDescription is a global variable, the size of the array is automatically enlarged as required to enable
storage of the full result.

The status value is an error number that depends on the field bus device and protocol.

See also
num ioStatus(dio diInputOutput, string& sDescription, string& sPhysicalPath)
num ioStatus(aio diInputOutput, string& sDescription, string& sPhysicalPath)

Code Status

0 No E-Stop (E-Stop chain is closed).

1 No E-Stop any more, waiting validation. In manual mode, the
MCP must be on its support to enable power.

2 E-Stop open , or waiting for the correction of a hardware fault.

© Stäubli 2010 – D28077104A VAL 3110 / 191

num getMonitorSpeed()

Function
This instruction returns the current monitor speed of the robot (in the range [0, 100]).

Example
This program, to be called in a specific task, checks that the first robot cycle is done at low speed:

while true
 if(nCycle < 2)
 if (getMonitorSpeed()> 10)
 stopMove()
 gotoxy(0,0)
 putln("For the first cycle the monitor speed must remain at 10%")
 wait(getMonitorSpeed()<= 10)
 endIf
 restartMove()
 endIf
 delay(0)
endWhile

See also
num setMonitorSpeed(num nSpeed)

num setMonitorSpeed(num nSpeed)

Function
This instruction modifies the current monitor speed of the robot. setMonitorSpeed() is always able to reduce the
monitor speed. To increase it, setMonitorSpeed() is effective only if the robot is in remote working mode and if the
operator does not have access to the monitor speed (when the current user profile does not allow use of the
speed buttons, or the MCP has been disconnected).

It returns 0 if the monitor speed has been successfully modified, else a negative error code:

See also
num getMonitorSpeed()

Code Description

-1 The robot is not in remote working mode

-2 The monitor speed is under the control of the operator: change the current user profile
to remove operator access to monitor speed

-3 The specified speed is not supported: it must be in the range [0, 100]

VAL 3 © Stäubli 2010 – D28077104A 111 / 191

Chapter 8 - Robot control

string getVersion(string sComponent)

Function
This instruction returns the version of different hardware and software components of the robot controller. The
table below lists the supported components and, for each, the format of the returned value:

Example
if getVersion("compliance")!="enabled"
 putln("The compliance license is missing on the controller")
endIf

See also
string getLicence(string sOemLicenceName, string sOemPassword)

Component Description

"VAL 3" Controller VAL 3 version, such as "s7.0 - Jun 18 2010 - 16:01:17"

"ArmType" Type of the arm attached to the controller, such as "tx90-S1" or "rs60-S1-D20-
L200"

"Tuning" Version of the arm tuning, such as "R3"

"Mounting" Arm mounting, such as "floor", "wall" or "ceiling"

"ControllerSN" Serial number of the controller, such as "F07_12R3A1_C_01"

"ArmSN" Serial number of the arm, such as "F07_12R3A1_A_01"

"Starc" Version of the Starc firmware package (CS8C), such as "1.16.3 - Sep 27 2007
- 16:01:17"

Name of the
licence

Status of the controller software license: "" (not installed or demo delay
expired),"demo" or "enabled"
The names of the installed controller licenses (such as "alter", "compliance",
"remoteMcp", "oemLicence", "plc", "testMode", "mcpMode"...) are listed in the
Control Panel of the robot pendant

© Stäubli 2010 – D28077104A VAL 3112 / 191

VAL 3 © Stäubli 2010 – D28077104A 113 / 191

Chapter 9 - Arm positions

CHAPTER 9

ARM POSITIONS

© Stäubli 2010 – D28077104A VAL 3114 / 191

VAL 3 © Stäubli 2010 – D28077104A 115 / 191

Chapter 9 - Arm positions

9.1. INTRODUCTION

This chapter describes the VAL 3 data types used to program the arm positions used in a VAL 3 application.
Two position types are defined in VAL 3: joint positions (joint type) that give the angular position of each revolute
axis and the linear position of each linear axis, and Cartesian points (point type) that give the Cartesian position
of the tool center point at the end of the arm relative to a reference frame.
The tool type describes a tool and its geometry used to position and control the speed of the arm; it describes
also how to activate the tool (digital output, delay).
The frame type describes a geometric reference frame. The use of frames makes geometrical point manipulation
much simpler and more intuitive.
The trsf type describes a geometric transformation. It is used by the tool, point and frame types.
Finally, the config type describes the more advanced concept of arm configuration.
The relationships between these various types can be summarized as follows:

Organization chart: frame / point / tool / trsf

9.2. JOINT TYPE

9.2.1. DEFINITION

A joint location (joint type) defines the angular position of each revolute axis and the linear position of each linear
axis.
The joint type is a structured type, with the following fields, in this order:

These fields are expressed in degrees for the rotary axes, and in millimeters or inches for the linear axes. The
origin of each axis is defined by the type of arm used.
By default, each field of a joint type variable is initialized at the value 0.

num j1 Joint position of axis 1
num j2 Joint position of axis 2
num j3 Joint position of axis 3
num j... Joint position of axis ... (one field for each axis)

© Stäubli 2010 – D28077104A VAL 3116 / 191

9.2.2. OPERATORS

In ascending order of priority:

To avoid confusions between = and == operators, the = operator is not allowed within VAL 3 expressions used as
instruction parameter.

9.2.3. INSTRUCTIONS

joint abs(joint jPosition)

Function
This instruction returns the absolute value of a joint jPosition, field by field.

Details
The absolute value of a joint, with the ">" or "<" joint operators, is useful to compute easily a distance between a
joint position and a reference position.

Example
jReference = {90, 45, 45, 0, 30, 0}
jMaxDistance = {5, 5, 5, 5, 5, 5}
j = herej()
// Checks that all the axis are less than 5 degrees from the reference
if(!(abs(j - jReference) < jMaxDistance))
 popUpMsg("Move closer to the marks")
endIf

See also
Operator < (joint)
Operator > (joint)

joint <joint& jPosition1> = <joint jPosition2> Assigns jPosition2 to the jPosition1 variable field
by field and returns jPosition2.

bool <joint jPosition1> != <joint jPosition2> Returns true if a jPosition1 field is not equal to the
corresponding jPosition2 field, to within the
accuracy of the robot, otherwise it returns false.

bool <joint jPosition1> == <joint jPosition2> Returns true if each jPosition1 field is equal to the
corresponding jPosition2 field, to within the
accuracy of the robot, otherwise it returns false.

bool <joint jPosition1> > <joint jPosition2> Returns true if each jPosition1 field is greater than
the corresponding jPosition2 field, otherwise it
returns false.

bool <joint jPosition1> < <joint jPosition2> Returns true if each jPosition1 field is less than the
corresponding jPosition2 field, otherwise it returns
false.

Caution: jPosition1 > jPosition2 is not the same
as !(jPosition1 < jPosition2)

joint <joint jPosition1> - <joint jPosition2> Returns the difference, field by field, between
jPosition1 and jPosition2.

joint <joint jPosition1> + <joint jPosition2> Returns the sum, field by field, of jPosition1 and
jPosition2.

VAL 3 © Stäubli 2010 – D28077104A 117 / 191

Chapter 9 - Arm positions

joint herej()

Function
This instruction returns the current arm joint position.

When arm power is on, the returned value is the position sent to the amplifiers by the controller, and not the
position read from the axis encoders.

When arm power is off, the returned value is the position read from the axis encoders ; because of noise in the
encoder measurements, the position may vary a bit even when the arm is stopped.

The controller joint position is refreshed every 4 ms.

Example
//Wait until the arm is near the reference position, with a 60 s time out
bStart = watch(abs(herej() - jReference) < jMaxDistance, 60)
if bStart==false
 popUpMsg("Move closer to the start position")
endIf

See also
point here(tool tTool, frame fReference)
bool getLatch(joint& jPosition) (CS8C only)
bool isInRange(joint jPosition)

bool isInRange(joint jPosition)

Function
This instruction tests if a joint position is within the software joint limits of the arm.

When the arm is out of the software joint limits (after a maintenance operation), it is not possible to move the arm
with a VAL 3 application, only manual moves are possible (with the move direction restricted to moving it toward
the limits).

Example
// Check if the current position is within the joint limits
if isInRange(herej())==false
 putln("Please place the arm within its workspace")
endIf

See also
joint herej()

© Stäubli 2010 – D28077104A VAL 3118 / 191

void setLatch(dio diInput) (CS8C only)

Function
This instruction enables the robot position latch on the next rising edge of the input signal.

Details
The robot position latching is a hardware feature that is supported only by the fast inputs of the CS8C controller
(fIn0, fIn1).

The detection on the rising edge of the input signal is guaranteed only if the signal remains low during at least
0.2 ms before the rising edge, and high during at least 0.2 ms after the rising edge.

Runtime error 70 (invalid parameter value) is generated if the specified digital input does not support robot
position latching.

See also
bool getLatch(joint& jPosition) (CS8C only)

bool getLatch(joint& jPosition) (CS8C only)

Function
This instruction reads the last latched robot position.

The function returns true if there is a valid latched position to read. If a latch is pending, or if latching has never
been enabled, the function returns false and the position is not updated.
getLatch returns the same latched position until a new latch is enabled with the setLatch instruction.
The arm position is refreshed in the CS8C controller every 0.2 ms; the latched position is the position of the arm
between 0 and 0.2 ms after the rising edge of the fast input.

Example
setLatch(diLatch)
// Wait for setLatch to be effective before using getLatch
delay(0)
// Wait for a latched position during 5 seconds.
bLatch = watch(getLatch(jPosition)==true, 5)
if bLatch==true
 putln("Successful position latch")
else
 putln("No latch signal was detected")
endIf

See also
void setLatch(dio diInput) (CS8C only)
joint herej()

CAUTION:
The latch is enabled only after some time (between 0 and 0.2 ms) after the setLatch
instruction is executed. You may need to add a delay(0) instruction after setLatch to
make sure the latch is effective before the next VAL 3 instruction is executed.

VAL 3 © Stäubli 2010 – D28077104A 119 / 191

Chapter 9 - Arm positions

9.3. TRSF TYPE

9.3.1. DEFINITION

A transformation (trsf type) defines a position and / or orientation change. It is the mathematical composition of a
translation and a rotation.

A transformation itself doesn´t represent a position in space, but can be interpreted as the position and
orientation of a Cartesian point or frame relative to another frame.

The trsf type is a structured type whose fields are, in this order:

The x, y and z fields are expressed in the unit of length of the application (millimeter or inch, see the chapter
entitled Unit of length). The rx, ry and rz fields are expressed in degrees.

The x, y and z coordinates are the Cartesian coordinates of the translation (or the position of a point or frame in
the reference frame). When rx, ry and rz are zero, the transformation is a translation without change of
orientation.

When a trsf type variable is initialized, its default value is {0,0,0,0,0,0}.

num x Translation along the x axis

num y Translation along the y axis

num z Translation along the z axis

num rx Rotation around the x axis

num ry Rotation around the y axis

num rz Rotation around the z axis

© Stäubli 2010 – D28077104A VAL 3120 / 191

9.3.2. ORIENTATION

Orientation

The position of frame R2 (grey) relative to R1 (black) is:
x = 250mm, y = 350 mm, z = 450mm, rx = 0°, ry = 0°, rz = 0°

Coordinates rx, ry and rz correspond to the angles of rotation that must be applied successively around the x, y
and z axis to obtain the orientation of the frame.

For example, orientation rx = 20°, ry = 10°, rz = 30° is obtained as follows. First, the frame (x,y,z) is rotated
through 20° around the x axis. This gives a new frame (x’,y’,z’). The x and x’ axis coincide.

Frame rotation about the axis: X

Then the frame is rotated through 20° around the y’ axis of the frame obtained at the previous step. This gives a
new frame (x’’,y’’,z’’). The y’ and y’’ axis coincide.

VAL 3 © Stäubli 2010 – D28077104A 121 / 191

Chapter 9 - Arm positions

Frame rotation about the axis: Y’

Lastly, the frame is rotated through 20° about the z’’ axis of the frame obtained at the previous step. The
orientation of the new frame obtained (x’’’,y’’’,z’’’) is defined by rx, ry, rz. The z’’ and z‘’’ axis coincide.

Frame rotation about the axis: Z’’

The position of frame R2 (grey) relative to R1 (black) is:
x = 250mm, y = 350 mm, z = 450mm, rx = 20°, ry = 10°, rz = 30°

The values of rx, ry and rz are defined modulo 360 degrees. When the system calculates rx, ry and rz, their
values are always between -180 and +180 degrees. Several possible values of rx, ry, and rz still remain: The
system ensures that at least two coordinates are between -90 and 90 degrees (unless rx is +180 and ry 0).
When ry is 90 degrees (modulo 180), the selected value of rx is zero.

© Stäubli 2010 – D28077104A VAL 3122 / 191

9.3.3. OPERATORS

In ascending order of priority:

To avoid confusions between = and == operators, the = operator is not allowed within VAL 3 expressions used as
instruction parameter.

9.3.4. INSTRUCTIONS

num distance(trsf trPosition1, trsf trPosition2)

Function
Returns the distance between trPosition1 and trPosition2.

Example
This line computes the distance between two tools:

distance(position(tTool1, flange), position(tTool2, flange))

See also
point appro(point pPosition, trsf trTransformation)
point compose(point pPosition, frame fReference, trsf trTransformation)
trsf position(point pPosition, frame fReference)
num distance(point pPosition1, point pPosition2)

trsf <trsf& trPosition1> = <trsf trPosition2> Assigns trPosition2 to the trPosition1 variable
field by field and returns trPosition2.

bool <trsf trPosition1> != <trsf trPosition2> Returns true if a trPosition1 field is not equal to the
corresponding trPosition2 field, otherwise it returns
false.

bool <trsf trPosition1> == <trsf trPosition2> Returns true if each trPosition1 field is equal to the
corresponding trPosition2 field, otherwise it returns
false.

trsf <trsf trPosition1> <trsf trPosition2> Returns the geometrical composition of the
trPosition1 and trPosition2 transformations.
Caution! Usually, trPosition1 trPosition2 !=
trPosition2 trPosition1!

trsf ! <trsf trPosition> Returns the inverse transformation of trPosition.

CAUTION:
To ensure that the distance is valid, position 1 and position 2 must be defined relative to
the same reference frame.

VAL 3 © Stäubli 2010 – D28077104A 123 / 191

Chapter 9 - Arm positions

trsf interpolateL(trsf trStart, trsf trEnd, num nPosition)

Function
This instruction returns an intermediate position aligned with a start position trStart and a target position trEnd.
The nPosition parameter specifies the linear interpolation to apply according to the equation, for the x
coordinate: trsf.x0 = trStart.x + (trEnd.x-trStart.x)*nPosition. The same equation holds for Y and Z coordinates.

The orientation rx, ry, rz is computed with a similar, but more complex equation. The algorithm used by
interpolateL is the same as the algorithm used by the motion generator to compute intermediate positions on a
movel instruction.

interpolateL(trStart, trEnd, 0) returns trStart; interpolateL(trStart, trEnd, 1) returns trEnd;
interpolateL(trStart, trEnd, 0.5) returns the middle position in between trStart and trEnd. A negative value of the
nPosition parameter results in a position 'before' trStart. A value greater than 1 results in a position 'after' trEnd.

A runtime error is generated if the parameter nPosition is not in the range]-1, 2[.

See also
trsf position(point pPosition, frame fReference)
trsf position(frame fFrame, frame fReference)
trsf position(tool tTool, tool tReference)
trsf interpolateC(trsf trStart, trsf trIntermediate, trsf trEnd, num nPosition)
trsf align(trsf trPosition, trsf Reference)

© Stäubli 2010 – D28077104A VAL 3124 / 191

trsf interpolateC(trsf trStart, trsf trIntermediate, trsf trEnd,
num nPosition)

Function
This instruction returns an intermediate position on the arc of a circle defined by positions trStart, trIntermediate
and trEnd. The nPosition parameter specifies the circular interpolation to apply. The algorithm used by
interpolateC is the same as the algorithm used by the motion generator to compute intermediate positions on a
movec instruction.

interpolateC(trStart, trIntermediate, trEnd, 0) returns trStart; interpolateC(trStart, trIntermediate, trEnd, 1) returns
trEnd; interpolateC(trStart, trIntermediate, trEnd, 0.5) returns the middle position on the arc in between trStart
and trEnd. A negative value of the nPosition parameter results in a position 'before' trStart. A value greater than
1 results in a position 'after' trEnd.

A runtime error is generated if the arc is not correctly defined (positions too close), or if the rotation interpolation
remains undetermined (see the "Movement control - interpolation of orientation" chapter).

See also
trsf position(point pPosition, frame fReference)
trsf position(frame fFrame, frame fReference)
trsf position(tool tTool, tool tReference)
trsf interpolateL(trsf trStart, trsf trEnd, num nPosition)
trsf align(trsf trPosition, trsf Reference)

trsf align(trsf trPosition, trsf Reference)

Function
This instruction returns the input trPosition with modified orientation so that the Z axis of the returned orientation
is aligned with the nearest axis X, Y or Z of the reference orientation of trReference. The X, Y, Z coordinates of
trPosition and trReference are not used: the x, y, z coordinates of the returned value are the same as the x, y, z
coordinates of trPosition.

See also
trsf position(point pPosition, frame fReference)
trsf position(frame fFrame, frame fReference)
trsf position(tool tTool, tool tReference)
trsf interpolateL(trsf trStart, trsf trEnd, num nPosition)
trsf interpolateC(trsf trStart, trsf trIntermediate, trsf trEnd, num nPosition)

VAL 3 © Stäubli 2010 – D28077104A 125 / 191

Chapter 9 - Arm positions

9.4. FRAME TYPE

9.4.1. DEFINITION

The frame type is used to define the position of reference frames in the cell.

The frame type is a structured type with only one accessible field:

The reference frame of a frame type variable is defined when it is initialized (via the user interface, via the =
operator, or the link() instruction). The world reference frame is always defined in a VAL 3 application: a
reference frame is linked to the world frame, either directly or via other frames.

A runtime error is generated during a geometrical calculation if the world frame coordinates have been modified.

Links between reference frames

By default, local frame variables, and frames in user type variables, have no reference frame. Before they can be
used, they must be initialized from another frame with the ’=’ operator, or via one of the link(), and setFrame()
instructions.

9.4.2. USE

The use of reference frames in a robotic application is highly recommended for the following purposes:

trsf trsf position of the frame in its reference frame

- To give a more intuitive view of the application points
The display of the cell's points is structured according to the hierarchical structure of the frames.

- To update the position of a set of points quickly
When an application point is linked to an object, it is advisable to define a frame for that object and
link the VAL 3 points to the frame. If the object is moved, simply reteach the frame to allow all linked
points to be corrected at the same time.

© Stäubli 2010 – D28077104A VAL 3126 / 191

- To reproduce a trajectory in several places in the cell
Define the trajectory points relative to a working frame and teach a frame for each position in which
the trajectory is to be reproduced. By assigning the value of a taught frame to the working frame, the
entire trajectory "moves" to the taught frame.

- To make it easier to calculate geometrical movements
The compose() instruction allows geometrical movements expressed in any reference frame to be
performed on any point. The position() instruction is used to calculate the position of a point in any
reference frame.

VAL 3 © Stäubli 2010 – D28077104A 127 / 191

Chapter 9 - Arm positions

9.4.3. OPERATORS

In ascending order of priority:

To avoid confusions between = and == operators, the = operator is not allowed within VAL 3 expressions used as
instruction parameter.

9.4.4. INSTRUCTIONS

num setFrame(point pOrigin, point pAxisOx, point pPlaneOxy,
frame& fResult)

Function
This instruction computes the coordinates of fResult from its origin point pOrigin, from a pAxisOx point on the
axis (Ox), and a pPlaneOxy point on the plane (Oxy).

The pAxisOx point must be on the side of the positive x values. The pPlaneOxy point must be on the side of the
positive y values.

The function returns:

A runtime error is generated if one of the points has no reference frame.

trsf position(frame fFrame, frame fReference)

Function
This instruction returns the coordinates of the frame fFrame in the reference frame fReference.

A runtime error is generated if fFrame or fReference have no reference frame.

See also
trsf position(point pPosition, frame fReference)
trsf position(tool tTool, tool tReference)

void link(frame fFrame, frame fReference)

Function
This instruction changes the reference frame of fFrame and set it to fReference. The position of the frame in the
reference frame remains unchanged.

frame <frame& fReference1> = <frame
fReference2>

Assigns the position and the reference frame of
fReference2 to the fReference1 variable.

bool <frame fReference1> != <frame
fReference2>

Returns true if fReference1 and fReference2 do not
have the same reference frame or the same position
in their reference frame.

bool <frame fReference1> == <frame
fReference2>

Returns true if fReference1 and fReference2 have
the same position in the same reference frame.

0 No error.

-1 The pAxisOx point is too close to the pOrigin.

-2 The pPlaneOxy point is too close to the axis (Ox).

© Stäubli 2010 – D28077104A VAL 3128 / 191

See also
Operator frame <frame& fFrame1> = <frame fFrame2>

9.5. TOOL TYPE

9.5.1. DEFINITION

The tool type is used to define the geometry and action of a tool.

The tool type is a stuctured type with the following fields, in this order:

The reference tool of a tool type variable is defined when it is initialized (via the user interface, the = operator or
the link() instruction). The flange tool is always defined in a VAL 3 application: all tools are linked to the flange
tool, either directly or via other tools.

A runtime error is generated during a geometrical computation if the flange tool coordinates have been modified.

Links between tools

By default, the output of a tool is the system valve1 output, the opening and closing times are 0 and the basic
tool is flange. Local tool variables, and tools in user type variables, have no reference tool. Before they can be
used, they must be initialized from another tool with the ’=’ operator, or the link() instruction.

9.5.2. USE

The use of tools in a robotic application is highly recommended for the following purposes:

trsf trsf position of the tool center point (TCP) in its basic tool

dio gripper Output used to activate the tool

num otime Time required to open the tool (seconds)

num ctime Time required to close the tool (seconds)

- To control the speed of movement
During manual or programmed movements, the system controls the Cartesian speed at the end of the
tool.

- To reach the same points with different tools
Simply select the VAL 3 tool corresponding to the physical tool at the end of the arm.

- To control the tool wear or a tool change
The tool wear can simply be compensated by the update of the geometrical coordinates of the tool.

VAL 3 © Stäubli 2010 – D28077104A 129 / 191

Chapter 9 - Arm positions

9.5.3. OPERATORS

In ascending order of priority:

To avoid confusions between = and == operators, the = operator is not allowed within VAL 3 expressions used as
instruction parameter.

9.5.4. INSTRUCTIONS

void open(tool tTool)

Function
This instruction activates the tool (opening) by setting its digital output to true.
Before activating the tool, open() waits for the robot to reach the required point by carrying out the equivalent of
a waitEndMove(). After activation, the system waits for otime seconds before executing the next instruction.
This instruction does not make sure that the robot is stabilized in its final position before the tool is activated.
When it is necessary to wait for complete stabilization of the movement, the isSettled() instruction must be used.
A runtime error is generated if the tTool dio is not defined or is not an output, or if a previously recorded motion
command cannot be run.

Example
// the open() instruction is equivalent to:
waitEndMove()
tTool.gripper=true
delay(tTool.otime)

See also
void close(tool tTool)
void waitEndMove()

tool <tool& tTool1> = <tool tTool2> Assigns the position and the basic tool of tTool2 to
the tTool1 variable.

bool <tool tTool1> != <tool tTool2> Returns true if tTool1 and tTool2 do not have the
same basic tool, the same position in their basic tool,
the same digital output or the same opening and
closing times.

bool <tool tTool1> == <tool tTool2> Returns true if tTool1 and tTool2 have the same
position in the same basic tool, and use the same
digital output with the same opening and closing
times.

© Stäubli 2010 – D28077104A VAL 3130 / 191

void close(tool tTool)

Function
This instruction activates the tool (closing) by setting its digital output to false.
Before activating the tool, close() waits for the robot to stop at the point by carrying out the equivalent of a
waitEndMove(). After activation, the system waits for ctime seconds before executing the next instruction.
This instruction does not make sure that the robot is stabilized in its final position before the tool is activated.
When it is necessary to wait for complete stabilization of the movement, the isSettled() instruction must be used.
A runtime error is generated if the tTool dio is not defined or is not an output, or if a previously recorded motion
command cannot be run.

Example
// the close instruction is equivalent to:
waitEndMove()
tTool.gripper = false
delay(tTool.ctime)

See also
Type tool
void open(tool tTool)
void waitEndMove()

trsf position(tool tTool, tool tReference)

Function
This instruction returns the coordinates of the tool tTool in the tReference tool.

A runtime error is generated if tTool or tReference have no reference tool.

See also
trsf position(point pPosition, frame fReference)
trsf position(frame fFrame, frame fReference)

void link(tool tTool, tool tReference)

Function
This instruction changes the reference tool of tTool and set it to tReference. The position of the tool in the
reference tool remains unchanged.

See also
Operator tool <tool& tTool1> = <tool tTool2>

VAL 3 © Stäubli 2010 – D28077104A 131 / 191

Chapter 9 - Arm positions

9.6. POINT TYPE

9.6.1. DEFINITION

The point type is used to define the position and orientation of the robot tool in the cell.

The point type is a stuctured type with the following fields, in this order:

The reference frame of a point is a frame type variable defined when it is initialized (via the user interface, using
the = operator and the link(), here(), appro() and compose() instructions).

Point definition

A runtime error is generated if a point type variable with no defined reference frame is used.

9.6.2. OPERATORS

In ascending order of priority:

To avoid confusions between = and == operators, the = operator is not allowed within VAL 3 expressions used as
instruction parameter.

trsf trTrsf position of the point in its reference frame

config config arm configuration used to reach the position

CAUTION:
By default, local point variables, and points in user type variables, have no reference
frame. Before they can be used, they must be initialized from another point with the ’=’
operator, or via one of the link(), here(), appro() and compose() instructions.

point <point& pPoint1> = <point pPoint2> Assigns the position, the configuration and the
reference frame of pPoint2 to the pPoint1 variable.

bool <point pPoint1> ! = <point pPoint2> Returns true if pPoint1 and pPoint2 do not have
the same reference frame or the same position
in their reference frame.

bool <point pPoint1> == <point pPoint2> Returns true if pPoint1 and pPoint2 have the
same position in the same reference frame.

© Stäubli 2010 – D28077104A VAL 3132 / 191

9.6.3. INSTRUCTIONS

num distance(point pPosition1, point pPosition2)

Function
This instruction returns the distance between pPosition1 and pPosition2.

A runtime error is generated if pPosition1 or pPosition2 does not have a defined reference frame.

Example
This program waits for the arm to be closer than 10 mm to the position pTarget

wait(distance(here(tTool,world),pTarget)< 10)

See also
point appro(point pPosition, trsf trTransformation)
point compose(point pPosition, frame fReference, trsf trTransformation)
trsf position(point pPosition, frame fReference)
num distance(trsf trPosition1, trsf trPosition2)

point compose(point pPosition, frame fReference,
trsf trTransformation)

Function
This instruction returns the pPosition to which the geometrical transformation trTransformation is applied
relative to fReference frame.

The reference frame and the configuration of the point returned are those of pPosition.

A runtime error is generated if pPosition has no defined reference frame.

Example
// modification of the orientation without modification of Position
pResult = compose(pPosition,fReference,trTransformation)
pResult.trsf.x = pPosition.trsf.x
pResult.trsf.y = pPosition.trsf.y
pResult.trsf.z = pPosition.trsf.z
// modification of Position without modification of the orientation
trTransformation.rx = trTransformation.ry =trTransformation.rz = 0
pResult = compose(pResult,fReference,trTransformation)

See also
Operator trsf <trsf pPosition1> * <trsf pPosition2>
point appro(point pPosition, trsf trTransformation)

CAUTION:
The rotation component of tTransformation usually modifies not only the orientation of
pPosition, but also its Cartesian coordinates (unless pPosition is located at the origin of
fReference frame).
If we only want tTransformation to modify the orientation of pPosition, it is necessary to
update the result using the Cartesian coordinates of pPosition (see example).

VAL 3 © Stäubli 2010 – D28077104A 133 / 191

Chapter 9 - Arm positions

point appro(point pPosition, trsf trTransformation)

Function
This instruction returns a point modified by a geometric transformation. The transformation is defined relatively to
the same reference frame as the input point.
The reference frame and the configuration of the returned point are those of the input point.
A runtime error is generated if pPosition has no defined reference frame.

Example
// Approach:move to 100 mm mm above the point (Z axis)
movej(appro(pDestination,{0,0,-100,0,0,0}), flange, mNomDesc)
// Go to point
movel(pDestination, flange, mNomDesc)

See also
Operator trsf <trsf trPosition1> * <trsf trPosition2>
point compose(point pPosition, frame fReference, trsf trTransformation)

point here(tool tTool, frame fReference)

Function
This instruction returns the current position of the tTool tool in fReference frame (the position commanded and
not the position measured). The reference frame of the point returned is fReference. The configuration of the
point returned is the current configuration of the arm.

See also
joint herej()
config config(joint jPosition)
point jointToPoint(tool tTool, frame fReference, joint jPosition)

point jointToPoint(tool tTool, frame fReference, joint jPosition)

Function
This instruction returns the position of the tTool in the fReference frame when the arm is in the joint position
jPosition.
The reference frame of the point returned is fReference. The configuration of the point returned is the
configuration of the arm in the joint jPosition position.

See also
point here(tool tTool, frame fReference)
bool pointToJoint(tool tTool, joint jInitial, point pPosition, joint& jResult)

© Stäubli 2010 – D28077104A VAL 3134 / 191

bool pointToJoint(tool tTool, joint jInitial, point pPosition,
joint& jResult)

Function
This instruction computes the joint position jResult corresponding to the specified point pPosition. It returns true
if jResult is updated, false if no solution has been found.

The joint position to be located corresponds to the configuration of the pPosition. Fields with the value free do
not determine the configuration. Fields with the value same specify the same configuration as jInitial.

For axis that can rotate through more than one full turn, there are several joint solutions with exactly the same
configuration: the solution closest to jInitial is then taken.

No solution is possible if pPosition is out of reach (arm too short) or outside the software limits. If pPosition
specifies a configuration, it may be outside the limits for that configuration, but within the limits for a different
configuration.

A runtime error is generated if pPosition has no defined reference frame.

See also
joint herej()
point jointToPoint(tool tTool, frame fReference, joint jPosition)

trsf position(point pPosition, frame fReference)

Function
This instruction returns the coordinates of pPosition in fReference frame.

A runtime error is generated if pPosition has no reference frame.

Example
The distance between 2 points is the distance between their positions in world:

distance(position(pPoint1, world), position(pPoint2, world)) is distance(pPoint1, pPoint2)

See also
num distance(point pPosition1, point pPosition2)
trsf position(tool tTool, tool tReference)
trsf position(frame fFrame, frame fReference)

void link(point pPoint, frame fReference)

Function
This instruction changes the reference frame of pPoint and set it to fReference. The position of the point in the
reference frame remains unchanged.

See also
Operator point <point& pPoint1> = <point pPoint2>

VAL 3 © Stäubli 2010 – D28077104A 135 / 191

Chapter 9 - Arm positions

9.7. CONFIG TYPE

The configuration concept of a Cartesian point is an "advanced" concept; this chapter can be skipped the first
time you read this document.

9.7.1. INTRODUCTION

There are generally several ways in which a robot can reach a given Cartesian point.

These possibilities are known as "configurations". The figure below illustrates two different configurations:

Two configurations that can be used to reach a given point: P

In some cases, among all the possible configurations, it is important to specify the ones that are valid and the
ones that are to be prohibited. To deal with this problem, the point type is used to specify the configurations
allowed for the robot, via its config type field as defined below.

9.7.2. DEFINITION

The config type is used to define the configurations authorized for a given Cartesian position.

It depends on the type of arm used.

For a Stäubli RX/TX arm, the config type is a structured type whose fields are, in that order:

For a Stäubli RS/TS arm, the config type is limited to the Shoulder field:

The shoulder, elbow and wrist fields can have the following values:

shoulder shoulder configuration

elbow elbow configuration

wrist wrist configuration

shoulder shoulder configuration

shoulder

righty righty shoulder configuration imposed

lefty lefty shoulder configuration imposed

ssame Shoulder configuration change not allowed

sfree Free shoulder configuration

© Stäubli 2010 – D28077104A VAL 3136 / 191

9.7.3. OPERATORS

In ascending order of priority:

To avoid confusions between = and == operators, the = operator is not allowed within VAL 3 expressions used as
instruction parameter.

elbow

epositive epositive elbow configuration imposed

enegative enegative elbow configuration imposed

esame Elbow configuration change not allowed

efree Free elbow configuration

wrist

wpositive wpositive wrist configuration imposed

wnegative wnegative wrist configuration imposed

wsame Wrist configuration change not allowed

wfree Free wrist configuration

config <config& configuration1> =
<config configuration2>

Assigns the shoulder, elbow and wrist fields for
configuration2 to the configuration1 variable.

bool <config configuration1> != <config
configuration2>

Returns true if configuration1 and configuration2
do not have the same shoulder, elbow or wrist field
values.

bool <config configuration1> == <config
configuration2>

Returns true if configuration1 and configuration2
have the same shoulder, elbow or wrist field values.

VAL 3 © Stäubli 2010 – D28077104A 137 / 191

Chapter 9 - Arm positions

9.7.4. CONFIGURATION (RX/TX ARM)

9.7.4.1. SHOULDER CONFIGURATION

To reach a given Cartesian point, the arm of the robot may be to the right or the left of the point: these two
configurations are called righty and lefty.

The righty configuration is defined by (d1 sin(j2) + d2 sin(j2+j3) +) < 0, and the lefty configuration is
defined by (d1 sin(j2) + d2 sin(j2+j3) +) >= 0, where d1 is the length of the robot arm, d2 the length of
the forearm, and the distance between axis 1 and axis 2, in the x direction.

Configuration: righty Configuration: lefty

© Stäubli 2010 – D28077104A VAL 3138 / 191

9.7.4.2. ELBOW CONFIGURATION

In addition to the shoulder configuration, there are two robot elbow configurations: the elbow configurations are
called epositive and enegative.

The epositive configuration is defined by j3 >= 0.

The enegative configuration is defined by j3 < 0.

9.7.4.3. WRIST CONFIGURATION

In addition to the shoulder and elbow configurations, there are two robot wrist configurations. The two wrist
configurations are called wpositive and wnegative.

Configuration: enegative Configuration: epositive

VAL 3 © Stäubli 2010 – D28077104A 139 / 191

Chapter 9 - Arm positions

The wpositive configuration is defined by j5 >= 0.

The wnegative configuration is defined by j5 < 0.

Configuration: wnegative Configuration: wpositive

© Stäubli 2010 – D28077104A VAL 3140 / 191

9.7.5. CONFIGURATION (RS/TS ARM)

To reach a given Cartesian point, the arm of the robot may be to the right or the left of the point: these two
configurations are called righty and lefty.

The righty configuration is defined by sin(j2) > 0, and the lefty configuration is defined by sin(j2) < 0.

9.7.6. INSTRUCTIONS

config config(joint jPosition)

Function
This instruction returns the configuration of the robot for the joint jPosition position.

See also
point here(tool tTool, frame fReference)
joint herej()

Configuration: righty Configuration: lefty

VAL 3 © Stäubli 2010 – D28077104A 141 / 191

Chapter 10 - Movement control

CHAPTER 10

MOVEMENT CONTROL

© Stäubli 2010 – D28077104A VAL 3142 / 191

VAL 3 © Stäubli 2010 – D28077104A 143 / 191

Chapter 10 - Movement control

10.1. TRAJECTORY CONTROL

A succession of points is not sufficient to define the trajectory of a robot. It is also necessary to indicate the type
of trajectory used between the points (curve or straight line), specify how the trajectories are linked together and
define the movement speed parameters. This section therefore presents the different types of movements
(movej, movel and movec instructions) and describes how to use the movement descriptor parameters (mdesc
type).

10.1.1. TYPES OF MOVEMENT: POINT-TO-POINT, STRAIGHT LINE, CIRCLE

The robot's movements are mainly programmed using the movej, movel and movec instructions. The movej
instruction can be used to make point-to-point movements, movel is used for straight line movements, and
movec for circular movements.

A point-to-point movement is a movement in which only the final destination (Cartesian or joint position) is
important. Between the start point and the end point, the tool center point follows a curve defined by the system
to optimize the speed of the movement.

Initial and final positions

Conversely, in the case of a straight line movement, the tool center point moves along a straight line. The
orientation is interpolated in a linear way between the initial and final orientation of the tool.

Straight line movement

© Stäubli 2010 – D28077104A VAL 3144 / 191

In a circular movement, the tool center point moves through an arc defined by 3 points, and the tool orientation is
interpolated between the initial orientation, the intermediate orientation, and the final orientation.

Circular movement

Example:
A typical handling task involves picking up parts at one location and putting them down at another. Let us assume
that the parts are to be picked up at the pPick point and put down at the pPlace point. To go from the pPick point
to the pPlace point, the robot must pass through a disengagement point pDepart and an approach point
pAppro.

Cycle type: U

Let us assume that the robot is initially at the pPick point. The program required to execute the movement can be
written as follows:

movel(pDepart, tTool, mDesc)
movej(pAppro, tTool, mDesc)
movel(pPlace, tTool, mDesc)

VAL 3 © Stäubli 2010 – D28077104A 145 / 191

Chapter 10 - Movement control

Straight line movements are used for disengagement and approach. However, the main movement is a point-to-
point movement, as the geometry of this part of the trajectory does not need to be accurately controlled, because
the aim is to move as quickly as possible.

Note:
The geometry of the trajectory does not depend on the speed at which both these types of
movement are executed. The robot always passes through the same position. This is particularly
important when developing applications. It is possible to start with slow movements and then
progressively increase the speed without distorting the trajectory of the robot.

10.1.2. MOVEMENT SEQUENCING: BLENDING

10.1.2.1. BLENDING

Let us now return to the example of the U cycle described in the previous chapter. In the absence of any specific
movement sequencing control, the robot stops at the pDepart and pAppro points, as the trajectory is angled at
these points. This unnecessarily increases the duration of the operation and there is no need to pass through
these precise points.

The duration of the movement can be significantly reduced by "blending" the trajectory in the vicinity of the
pDepart and pAppro points. To do so, we use the blend field of the movement descriptor. When this field is set
to off, the robot stops at each point along the trajectory. However, when the parameter is set to joint or
Cartesian, the trajectory is blended in the vicinity of each point and the robot no longer stops at the fly-by points.

When the blend field has the value joint or Cartesian, two other parameters must be specified: leave and
reach. These parameters determine the distance from the arrival point at which the nominal trajectory is left (start
of blending) and the distance from the arrival point at which it is rejoined (end of blending).

Definition of the distances: ’leave’ / ’reach’

Example:
Let us return to the program described in the section entitled "Types of movement: point-to-point or straight line".
The previous movement program can be modified as follows:

mDesc.blend = joint
mDesc.leave = 50
mDesc.reach = 200
movel(pDepart, tTool, mDesc)
mDesc.leave = 200
mDesc.reach = 50
movej(pAppro, tTool, mDesc)
mDesc.blend = off
movel(pPlace, tTool, mDesc)

© Stäubli 2010 – D28077104A VAL 3146 / 191

The following trajectory is obtained:

Blended cycle

The robot no longer stops at the pDepart and pAppro points. The movement is therefore faster. In fact, the
larger the leave and reach distances, the faster the movement.

10.1.2.2. CANCEL BLENDING

The waitEndMove() instruction is used to cancel the effect of blending. The robot then completes the last
programmed movement as far as its arrival point, as if the movement descriptor blend field were set to off.

For example, let us examine the following program:

mDesc.blend = joint
mDesc.leave = 10
mDesc.reach = 10
movej(pA, tTool, mDesc)
movej(pB, tTool, mDesc)
waitEndMove()
movej(pC, tTool, mDesc)
movej(pD, tTool, mDesc)
etc.
The trajectory followed by the robot is then as follows:

Cycle without blending at a given point

10.1.2.3. JOINT BLENDING, CARTESIAN BLENDING

To make it very simple, a joint blending is like a point to point move between the leave and reach points, the
Cartesian blending is like a circular move between these points.

• Joint blending is usually faster than Cartesian blending. But joint blending may lead to strange path when there
is complex orientation change (typically a circle in a plane followed with a circle in an orthogonal plane), or for
pure rotation moves.

VAL 3 © Stäubli 2010 – D28077104A 147 / 191

Chapter 10 - Movement control

• The speed and acceleration control is more accurate with the Cartesian blending. A Cartesian blending between
two moves that are on the same plane is also guaranteed to be in this plane.

The most optimized shape for a blending depends on the application, but the VAL 3 interpreter has to choose the
shape automatically. The result is usually not surprising, but sometimes it can be...

The choice may lead to an unexpected complex shape when the effective leave and reach distances are quite
different. The computed shape reduces the curvature of the path for speed optimization, but the result may not be
desirable for some process applications. When the leave and reach distances are equal, the Cartesian blending
always result in a simple shape.

The Cartesian blending applies to both position and orientation. A complex orientation change may impact the
shape of the blending, leading to unexpected results. There are also some restrictions with orientation change:
like on a circle, big changes in orientation result in a motion error when several solutions are possible but the
system has no criteria to choose one. When this happens, additional intermediate point(s) are needed to help the
system find the correct orientation interpolation.

10.1.3. MOVEMENT RESUMPTION

When the arm power is cut off before the robot has finished its movement, following an emergency stop for
example, movement resumption is required when power is restored to the system. If the arm has been moved
manually during the stoppage, it may be in a position far from its normal trajectory. It is then necessary for
movement resumption to take place without a collision occurring. The VAL 3's trajectory control function provides
the possibility of managing movement resumption using a "connection movement".

When movement resumes, the system ensures that the robot is indeed on its programmed trajectory: if there is
any deviation, however slight, it automatically stores a point-to-point command to reach the exact position at
which the robot left its trajectory: it is a "connection movement". This movement is made at low speed. It must be
validated by the operator, except in automatic mode, in which it can be carried out without human intervention.
The autoConnectMove() instruction is used to detail behaviour in automatic mode.

The resetMotion() instruction is used to cancel the current movement, and possibly to program a connection
movement in order to resume a position at low speed and under the operator's control.

© Stäubli 2010 – D28077104A VAL 3148 / 191

10.1.4. PARTICULARITIES OF CARTESIAN MOVEMENTS (STRAIGHT LINE, CIRCLE)

10.1.4.1. INTERPOLATION OF THE ORIENTATION

The VAL 3 trajectory generator always minimizes the amplitude of tool rotations when moving from one
orientation to another.

This makes it possible, as a particular case, to program a constant orientation, in absolute terms, or as compared
with the trajectory, on all straight-line or circular movements.

• For a constant orientation, the initial and final positions, and the intermediate position for a circle, must have
the same orientation.

Constant orientation in absolute terms

• For a constant orientation as compared with the trajectory (e.g. direction Y for the tool marker tangent to the
trajectory), the inital and final positions, and the intermediate position for a circle, must have the same
orientation as compared with the trajectory.

Constant orientation as compared with the trajectory

VAL 3 © Stäubli 2010 – D28077104A 149 / 191

Chapter 10 - Movement control

This results in a limitation for circular movements:

If the intermediate point forms an angle of 180° or more with the initial point or the final point, there are several
interpolation solutions for the orientation, and an error is generated.

It is then necessary to modify the position of the intermediate point to remove the ambiguity from the intermediate
orientations.

Ambiguity as to the intermediate orientation

In particular, programming a full circle involves 2 movec instructions:

movec (B, C, tTool, mDesc)
movec (D, A, tTool, mDesc)

Full circle

© Stäubli 2010 – D28077104A VAL 3150 / 191

10.1.4.2. CONFIGURATION CHANGE (ARM RX/TX)

Configuration change: righty / lefty

During a change of shoulder configuration, the centre of the robot's wrist has to pass vertically through axis 1 (but
not exactly in the case of offset robots).

Positive/negative elbow configuration change

During a change of elbow configuration, the arm has to go through the straight arm position (j3 = 0°).

VAL 3 © Stäubli 2010 – D28077104A 151 / 191

Chapter 10 - Movement control

Positive/negative wrist configuration change

During a change of wrist configuration, the arm has to go through the straight wrist position (j5 = 0°).

The robot must therefore pass through specific positions during a configuration change. But we cannot require a
straight-line or circular movement to pass through these positions if they are not on the desired trajectory! This
means that we cannot impose a change of configuration during a straight-line or circular movement.

Elbow configuration change impossible

In other words, during a straight-line or circular movement, we can only impose a configuration if it is compatible
with the initial position: it is therefore always possible to specify a free configuration, or one that is identical to the
initial configuration.

In certain exceptional cases, the straight line or arc does indeed pass through a position in which a change of
configuration is possible. In this case,if the configuration has been left free, the system can decide to change the
configuration during a straight-line or circular movement.

For a circular movement, the configuration of the intermediate point is not taken into account. The only
configurations that count are those of the initial and final positions.

© Stäubli 2010 – D28077104A VAL 3152 / 191

Shoulder configuration change possible

10.1.4.3. SINGULARITIES (ARM RX/TX)

Singularities are an inherent characteristic of all 6-axis robots. Singularities can be defined as the points at which
the robot changes configuration. Certain axis are then aligned: two aligned axes behave as a single axis and the
6-axis therefore behaves locally as a 5-axis robot. The end effector is then unable to carry out certain
movements. This is not a problem in the case of a point-to-point movement: system-generated movements are
still possible. On the other hand, during a straight-line or circular movement, we impose a movement geometry. If
the movement is impossible, an error is generated when the robot attempts to move.

10.2. MOVEMENT ANTICIPATION

10.2.1. PRINCIPLE

The system controls the movements of the robot in more or less the same way as a driver drives a car. It adapts
the speed of the robot to the geometry of the trajectory. Thus the better the trajectory is known in advance, the
better the system can optimize the speed of movement. This explains why the system does not wait for the
current robot movement to be completed before taking the instructions for the next movement into account.

Let us consider the following program lines:

movej(pA, tTool, mDesc)
movej(pB, tTool, mDesc)
movej(pC, tTool, mDesc)
movej(pD, tTool, mDesc)

Let us suppose that the robot is stationary when the program reaches these lines. When the first instruction is
executed, the robot starts to move towards point pA. The program then immediately proceeds to the second line,
well before the robot reaches point pA.

When the system executes the second line, the robot starts to move towards pA and the system records the fact
that after point pA, the robot must go to point pB. The program then continues with the next line: while the robot
continues its movement towards pA, the system records the instruction that after pB, the robot must proceed to
pC. As the program is executed much faster than the robot actually moves, the robot is probably still moving
towards pA when the next line is executed. The system thus records the next successive points.

When the robot starts to move towards pA, it already "knows" that after pA, it must go successively to pB, pC
and pD. If blending has been activated, the system knows that the robot will not stop before point pD. It can then
accelerate faster than if it had to prepare to stop at pB or pC.

VAL 3 © Stäubli 2010 – D28077104A 153 / 191

Chapter 10 - Movement control

The fact of executing the instruction lines only records the successive movement commands. The robot then
performs them according to its capabilities. The memory in which the movements are stored is large, to allow the
system to optimize the trajectory. Nevertheless, it is limited. When it is full, the program stops at the next
movement instruction. It resumes when the robot has completed the current movement, thus creating space in
the system memory.

10.2.2. ANTICIPATION AND BLENDING

This section examines in detail what happens when the movements are sequenced. Let us look again at the
previous example:

movej(pA, tTool, mDesc)
movej(pB, tTool, mDesc)
movej(pC, tTool, mDesc)
movej(pD, tTool, mDesc)

Let us assume that blending is activated in the movement descriptor, mDesc. When the first line is executed, the
system does not yet know what the next movement will be. Only the movement between the start point and the
pA leave point is fully determined, as the pA leave point is defined by the system from the movement descriptor
leave data (see the figure below).

Blended cycle

Until the second line is executed, the part of the blending trajectory in the vicinity of point pA has not been fully
determined, as the system has not yet taken the next movement into account. In single-step mode, the robot
does not go further than the pA leave point. When the next instruction is executed, the blending trajectory in the
vicinity of point pA (between pA leave and pA reach) can be defined, together with the movement as far as point
pB leave. The robot can then proceed to pB leave. In single-step mode, it will not go beyond this point until the
user executes the third instruction, and so on.

The advantage of this operating mode is that the robot passes through exactly the same position in single-step
mode as in normal program execution mode.

10.2.3. SYNCHRONIZATION

The anticipation mechanism causes desychronization between the VAL 3 instruction lines and the corresponding
robot movements: the VAL 3 program is ahead of the robot.

When it is necessary to carry out an action at a given robot position, the program has to wait for the robot to
complete its movements: the waitEndMove() instruction is used for synchronization purposes. An alternative is
to use the instruction getMoveId() to detect the arm's progress on the trajectory (see 10.4, real time movement
control).

© Stäubli 2010 – D28077104A VAL 3154 / 191

Thus in the following program:
movej(A, tTool, mDesc)
movej(B, tTool, mDesc)
waitEndMove()
movej(C, tTool, mDesc)
movej(D, tTool, mDesc)
etc.

The first two lines are executed when the robot starts to move towards A. The program is then blocked at the
third line until the robot is stabilized at point B. When the robot movement is stabilized at B, the program
resumes.

The open() and close() instructions also wait for the robot to complete its movements before activating the tool.

10.3. SPEED MONITORING

10.3.1. PRINCIPLE

The principle of monitoring the speed along a trajectory is as follows:
The robot moves and accelerates at all times to its maximum capacity, in accordance with the speed and
acceleration constraints imposed by the movement command.
The movement commands contain two types of speed constraints defined in a mdesc type variable:

Acceleration determines the rate at which the speed increases at the beginning of a trajectory. Conversely,
deceleration determines the rate at which the speed decreases at the end of the trajectory. When high
acceleration and deceleration values are used, the movements are faster, but jerkier. With low values, the
movements take a little longer, but they are smoother.

10.3.2. SIMPLE SETTINGS

When the tool and the object carried by the robot do not need to be handled with special care, Cartesian speed
constraints are not necessary. The speed along the trajectory is normally adjusted as follows:

To keep a harmonious arm behaviour, the acceleration and deceleration should be modified with the velocity: the
acceleration and deceleration parameters should be roughly the square of the velocity parameter. For instance, a
velocity of 120 % = 1.2 is best adapted with acceleration and deceleration of 1.2 x 1.2 = 1.44 = 144 %. Higher
values for acceleration and deceleration give a more aggressive, but shakier arm behaviour.

1. The velocity (joint speeds), acceleration and deceleration constraints

2. The Cartesian speed constraints for the tool center point

1. Set the Cartesian speed constraints very high, for example to the default values, to ensure that they
do not affect the rest of the setting procedure.

2. Initialize the velocity, acceleration and deceleration using the nominal values (100%).

3. Then adjust the speed along the trajectory using the velocity parameter.

VAL 3 © Stäubli 2010 – D28077104A 155 / 191

Chapter 10 - Movement control

10.3.3. ADVANCED SETTINGS

To control the Cartesian speed of the tool, for example to execute a trajectory at a constant speed, proceed as
follows:

10.3.4. ENVELOPPE ERROR

The nominal values for joint speed and acceleration are the nominal load values supported by the robot,
irrespective of trajectory.

However, the robot can often operate faster: the maximum speeds that can be reached by the robot depend on
its load and trajectory. In suitable cases (light load, positive gravitational effect) the robot can exceed its nominal
values without any damage being caused.

If the robot is carrying a load that is heavier than its nominal load, or if the joint speed and acceleration values are
too high, the robot cannot always obey its movement command and stops when an envelope error occurs. Such
errors can be avoided by specifying lower velocities and acceleration parameters.

10.4. REAL-TIME MOVEMENT CONTROL

The movement commands previously described in this manual have no immediate effect: when each command
is executed, a movement order is stored in the system. The robot then executes the stored movements.

The robot's movements can be controlled instantly, as follows:

• The monitor speed modifies the speed of all the movements. It can be adjusted with immediate effect with
the setMonitorSpeed() instruction. However this instruction cannot increase the speed when the operator
can also adjust it from the MCP.

• The stopMove() and restartMove() instructions are used to stop and restart movement along the trajectory.
• The resetMotion() instruction is used to stop the movement in progress and cancel the stored movement

commands.
• The Alter instruction (option) applies to the path a geometrical transformation (translation, rotation, rotation

at the tool center point) that is immediately effective.
• It is possible to track accurately, and in real time, the position of the robot on its path with the getMoveId()

instruction. Each move instruction is identified with a numeric value returned by the instruction. The
getMoveId() instruction returns a numeric value that identifies the current move (integer part), and the
progress on this move (decimal part). For instance, a move id of 17.572 means that the current move is the
move instruction that returned 17, and the robot position has performed 57.2 % of this move.

1. Set the Cartesian speed constraints to the values required.

2. Initialize the velocity, acceleration and deceleration using the nominal values (100%).

3. Then adjust the speed along the trajectory using the Cartesian speed parameters only.

4. If the speed is not sufficient, increase the acceleration and deceleration parameters.
If you want to brake automatically in sections with pronounced curves, reduce the acceleration and
deceleration parameters.

CAUTION:
In the case of straight line movements near a singularity, a small tool movement
requires large joint movements. If the velocity is set too high, the robot cannot obey the
command and stops when an envelope error occurs.

© Stäubli 2010 – D28077104A VAL 3156 / 191

10.5. MDESC TYPE

10.5.1. DEFINITION

The mdesc type is used to define the movement parameters (speed, acceleration, blending).

The mdesc type is a structured type, with the following fields, in this order:

A detailed explanation of these parameters is given at the beginning of the chapter entitled "Movement
control".
By default, an mdesc type variable is initialized with {100,100,100,9999,9999,joint,50,50}.

10.5.2. OPERATORS

In ascending order of priority:

num accel Maximum permitted joint acceleration as a % of the nominal acceleration of the
robot.

num vel Maximum permitted joint speed as a % of the nominal speed of the robot.

num decel Maximum permitted joint deceleration as a % of the nominal deceleration of the
robot.

num tvel Maximum permitted translational speed of the tool center point, in mm/s or inches/s
depending on the unit of length of the application.

num rvel Maximum permitted rotational speed of the tool center point, in degrees per second.

blend blend Blend mode: off (no blending), joint or Cartesian (blending).

num leave In joint and Cartesian blend mode, distance between the target point at which
blending starts and the next point, in mm or inches, depending on the unit of length
of the application.

num reach In joint and Cartesian blend mode, distance between the target point at which
blending stops and the next point, in mm or inches, depending on the unit of length
of the application.

mdesc <mdesc& desc1> = <mdesc desc2> Assigns each desc2 field to the field corresponding
to the desc1 variable.

bool <mdesc desc1> != <mdesc desc2> Returns true if the difference between desc1 and
desc2 is at least one field.

bool <mdesc desc1> == <mdesc desc2> Returns true if desc1 and desc2 have the same
field values.

VAL 3 © Stäubli 2010 – D28077104A 157 / 191

Chapter 10 - Movement control

10.6. MOVEMENT INSTRUCTIONS

num movej(joint jPosition, tool tTool, mdesc mDesc)

num movej(point pPosition, tool tTool, mdesc mDesc)

Function
This instruction records a command for a joint movement towards the pPosition or jPosition positions, using the
tTool and the mDesc movement parameters. It returns the move id assigned to this movement, and increases
by one the move id for the next move command.

A detailed explanation of the movement parameters is given at the beginning of the chapter entitled
"Movement control".
A runtime error is generated if mDesc contains invalid values, if jPosition is outside the software limits, if
pPosition cannot be reached, or if a previously saved movement command cannot be run (destination out of
reach).

See also
num movel(point pPosition, tool tTool, mdesc mDesc)
bool isInRange(joint jPosition)
void waitEndMove()
num movec(point pIntermediate, point pTarget, tool tTool, mdesc mDesc)

CAUTION:
The system does not wait for the movement to be completed before proceeding to the
next VAL 3 instruction: several movement commands can be stored in advance. When
the system has used up all its available memory and has no room for another command,
the instruction waits until the new command can be stored.

© Stäubli 2010 – D28077104A VAL 3158 / 191

num movel(point pPosition, tool tTool, mdesc mDesc)

Function
This instruction records a command for a linear movement towards the pPosition point, using the tTool tool and
the mDesc movement parameters. It returns the move id assigned to this movement, and increases by one the
move id for the next move command.

A detailed explanation of the movement parameters is given at the beginning of the chapter entitled
"Movement control".
A runtime error is generated if mDesc contains invalid values, if pPosition cannot be reached, if a straight line
movement towards pPosition is not possible or if a previously saved movement command cannot be run
(destination out of reach).

See also
num movej(joint jPosition, tool tTool, mdesc mDesc)
void waitEndMove()
num movec(point pIntermediate, point pTarget, tool tTool, mdesc mDesc)

CAUTION:
The system does not wait for the movement to be completed before proceeding to the
next VAL 3 instruction: several movement commands can be stored in advance. When
the system has used up all its available memory and has no room for another command,
the instruction waits until the new command can be stored.

VAL 3 © Stäubli 2010 – D28077104A 159 / 191

Chapter 10 - Movement control

num movec(point pIntermediate, point pTarget, tool tTool,
mdesc mDesc)

Function
This instruction records a command for a circular movement starting from the destination of the previous
movement and finishing at point pTarget and passing through the point pIntermediate. It returns the move id
assigned to this movement, and increases by one the move id for the next move command.

The tool orientation is interpolated in such a way that it is possible to program a constant orientation in absolute
terms, or as compared with the trajectory.

A detailed explanation of the various movement parameters and orientation interpolation can be found at
the beginning of the "Movement Control" chapter.
A runtime error is generated if mDesc has invalid values, if point pIntermediate (or point pTarget) cannot be
reached, if the circular movement is not possible (see the "Movement control - interpolation of orientation"
chapter), or if a movement command recorded beforehand cannot be executed (destination out of reach).

See also
num movej(joint jPosition, tool tTool, mdesc mDesc)
num movel(point pPosition, tool tTool, mdesc mDesc)
void waitEndMove()

CAUTION:
The system does not wait for the movement to be completed before proceeding to the
next VAL 3 instruction: several movement commands can be stored in advance. When
the system has used up all its available memory and has no room for another command,
the instruction waits until the new command can be stored.

© Stäubli 2010 – D28077104A VAL 3160 / 191

void stopMove()

Function
This instruction stops the arm on the trajectory and suspends authorization of the programmed movement.

The motion descriptor used to execute the stop are those used for the current movement.

The movements can only be resumed after a restartMove() or resetMotion() instruction.

Non-programmed movements (jog interface) are still possible.

Example
// waits for a signal
wait(diSignal==true)
// stops movements along the trajectory
stopMove()
wait(diSignal==false)
// restarts movements along the trajectory
restartMove()

See also
void restartMove()
void resetMotion(), void resetMotion(joint jStartingPoint)

void resetMotion(), void resetMotion(joint jStartingPoint)

Function
This instruction stops the arm on the trajectory and cancels all the stored movement commands. It resets the
move id to zero.

The programmed movement authorization is restored if it was suspended by the stopMove() instruction.

If the jStartingPoint joint position is specified, the next movement command can only be run from this position: a
connection movement must be performed beforehand to reach the jStartingPoint position.

If no joint position is specified, the next movement command is run from the arm's current position, wherever it is.

See also
bool isEmpty()
void stopMove()
void autoConnectMove(bool bActive), bool autoConnectMove()
num setMoveld(num nMoveld)
joint resetTurn(joint jReference)

CAUTION:
This instruction returns immediately: the VAL 3 task does not wait for the movement to
be completed before proceeding to the next instruction.

CAUTION:
This instruction returns immediately: the VAL 3 task does not wait for the movement to
be completed before proceeding to the next instruction.

VAL 3 © Stäubli 2010 – D28077104A 161 / 191

Chapter 10 - Movement control

void restartMove()

Function
This instruction restores the programmed movement authorization, and restarts the trajectory interrupted by the
stopMove() instruction.

If the programmed movement authorization was not interrupted by the stopMove() instruction, this instruction
has no effect.

See also
void stopMove()
void resetMotion(), void resetMotion(joint jStartingPoint)

void waitEndMove()

Function
This instruction cancels the blending of the last movement command recorded and waits for the command to be
executed.

This instruction does not wait for the robot to be stabilized in its final position, it only waits until the position
command sent to the drives corresponds to the desired final position. When it is necessary to wait for complete
stabilization of the movement, the isSettled() instruction must be used.

A runtime error is generated if a previously stored movement cannot be run (destination out of reach).

Example

(see chapter 10.2)

See also
bool isSettled()
bool isEmpty()
void stopMove()
void resetMotion(), void resetMotion(joint jStartingPoint)

© Stäubli 2010 – D28077104A VAL 3162 / 191

bool isEmpty()

Function
This instruction returns true if all the movement commands have been executed, returns false if at least one
command is still being executed.

Example
This program cancels the recorded moves, if any:
// If commands are in progress
if isEmpty()==false
 // Stop the robot and cancel the commands
 resetMotion()
 putln("Movements have been cancelled")
endIf

See also
void waitEndMove()
void resetMotion(), void resetMotion(joint jStartingPoint)

bool isSettled()

Function
This instruction returns true if the robot is stopped, and false if its position is not yet stabilized.

The position is considered as stabilized if the position error for each joint remains less than 1% of the maximum
authorized position error, for 50 ms.

See also
bool isEmpty()
void waitEndMove()

void autoConnectMove(bool bActive), bool autoConnectMove()

Function
In the remote mode, the connection movement is automatic if the arm is very close to its trajectory (distance less
than the maximum authorized drift error). If the arm is too far away from its trajectory, the connection movement
is automatic or under manual control depending on the mode defined by the autoConnectMove instruction:
automatically if bActive is true, in manual control mode if bActive is false. When called without parameters,
autoConnectMove returns the current connection movement mode.

By default, the connection movement in remote mode is under manual control.

See also
void resetMotion(), void resetMotion(joint jStartingPoint)

CAUTION:
The robot can be stopped for different reasons and may therefore be settled before all
registered moves are completed. Use isEmpty() to know if the robot is stopped at the
end of its programmed movement.

CAUTION:
Under normal conditions of use, the arm stops on its trajectory during an emergency
stop. Hence in remote mode, the arm is able to restart automatically whatever the
connection movement defined by the autoConnectMove instruction.

VAL 3 © Stäubli 2010 – D28077104A 163 / 191

Chapter 10 - Movement control

num getSpeed(tool tTool)

Function
This instruction returns the current Cartesian translation speed at the TCPtTool of the specified tool tTool. The
speed is computed from the joint velocity command and not from the joint velocity feedback.

See also
point here(tool tTool, frame fReference)

joint getPositionErr()

Function
This instruction returns the current joint position error of the arm. The joint position error is the difference between
the joint position command sent to the drives and the joint position feedback measured by the encoders.

See also
void getJointForce(num& nForce)

void getJointForce(num& nForce)

Function
This instruction returns the current joint torque (N.m for revolute axis) or force (N for linear axis) computed from
the motors currents.

The joint force is not a direct estimation of external efforts. It includes also gravity, friction, viscosity, inertia, noise
and accuracy of current sensors, relation between motor current and torque. It can be used to estimate external
efforts only by recording forces in reference conditions, and comparing them with forces measured in similar
conditions with additional external efforts.

It returns only a order of magnitude for forces. There is no commitment on accuracy that must be evaluated with
each application.

A runtime error is generated if the parameter is not an array of num with sufficient size.

See also
joint getPositionErr()

num getMoveld()

Function
This instruction returns a numeric value that gives the current position of the robot on the path. The integer part
identifies the number of the move instruction that is being executed. This integer is returned when the move
instruction is executed. The decimal part gives the progress % on this move.

A move id should never be tested with the ’==’ operator, but with the ‘>=’ operator: wait(getMoveId()==12) may
never return, because the move id may increase in one step from 11.998 to 12.013 and never take exactly the
expected value (12). You should write wait(getMoveId()>=12) instead.

Example
This example shows how the move id changes on a simple path:

nIdA = movel(pA, tTool, mDesc)
nIdB = movel(pB, tTool, mDesc)
waitEndMove()
nId = getMoveId()

During execution of this program:

© Stäubli 2010 – D28077104A VAL 3164 / 191

Suppose that the returned value nldA is 15. Then nldB is 16: the move id is automatically increased by one with
each move instruction.

• when getMoveId() is 15.8, the robot position is at 80 % of the move to point pA.

• when getMoveId() is 16.572, the robot position is at 57.2 % of the move to point pB.

• when getMoveId() is 17, the robot position is at 100 % of the move 16, so it is at point pB.

The value of nld, after waitEndMove(), is therefore nldB+1=17.

See also
num movej(joint jPosition, tool tTool, mdesc mDesc)
num movel(point pPosition, tool tTool, mdesc mDesc)
num movec(point pIntermediate, point pTarget, tool tTool, mdesc mDesc)

num setMoveld(num nMoveld)

Function
This instruction changes the move id for the next move instruction. It is useful to arrange so that the same path
always uses the same move id values. After a resetMotion, the move id is automatically reset to 0.

After using setMoveId() or resetMotion(), the relation between a move id and a move instruction may become
uncertain: several recorded moves may then have the same move id. setMoveId() should therefore not be given
a value that is also the move id of a pending move command.

Example
resetMotion()
nId1 = getMoveId()
setMoveId(1000)
nId2 = getMoveId()
nId3 = movel(pA, tTool, mDesc)
nId4 = movel(pB, tTool, mDesc)
waitEndMove()
nId5 = getMoveId()

After this program is executed, we have:

• nld1 is 0, because move id is set to 0 after resetMotion()

• nld2 is 0: move id was just changed with setMoveId()

• nld3 is 1000: a move instruction returns the move id previously defined, and increases it for the next move

• nld4 is 1001: the move id was increased by the previous move instruction

• nld5 is 1002: after waitEndMove(), 100 % of move 1001 is completed here, move id is then 1001+1 = 1002

See also
num getMoveld()
void resetMotion(), void resetMotion(joint jStartingPoint)

VAL 3 © Stäubli 2010 – D28077104A 165 / 191

Chapter 11 - Options

CHAPTER 11

OPTIONS

© Stäubli 2010 – D28077104A VAL 3166 / 191

VAL 3 © Stäubli 2010 – D28077104A 167 / 191

Chapter 11 - Options

11.1. COMPLIANT MOVEMENTS WITH FORCE CONTROL

11.1.1. PRINCIPLE

In a standard movement command, the robot moves to reach a requested position at a programmed rate of
acceleration and speed. If the arm cannot follow the command, additional force will be requested from the motors
in order to attempt to reach the desired position. When the deviation between the position set by the command
and the true position is too great, a system error is generated that cuts off power to the robot arm.

The robot is said to be 'compliant' when it accepts certain deviation between the position set by command and
the actual position. The controller can be programmed to be trajectory compliant, i.e. to accept a delay or
advance in relation to the programmed trajectory, by controlling the force applied by the arm. On the other hand,
no deviation in relation to the trajectory is allowed.

In practice, the VAL 3's compliant movements can allow the arm to follow a trajectory while being pushed or
pulled by an outside force, or come into contact with an object, with a check made on the force applied by the
arm on the object.

11.1.2. PROGRAMMING

Compliant movements are programmed like standard movements, using the movelf() and movejf() instructions,
with an additional parameter used to control the force applied by the arm. During the compliant movement, speed
and acceleration limits are applied, in the same way as for standard movements, via the movement descriptor.
The movement can take place along the trajectory, in either direction.

It is possible to combine compliant movements or combine compliant and standard movements: as soon as the
destination position is reached, the robot moves on to the next movement. The waitEndMove() instruction is
used to wait for the end of a compliant movement.

The resetMotion() instruction cancels all programmed movements, whether compliant or not. After
resetMotion(), the robot is no longer compliant.

The stopMove() and restartMove() instructions also apply to compliant movements:

The stopMove() forces the current movement speed to zero. If it is a compliant movement, it is hence stopped
and the robot is no longer compliant until the restartMove() instruction is run.

Lastly, the isCompliant() instruction is used to ensure that the robot is in compliant mode, for example before
allowing any outside force to be applied to the arm.

11.1.3. FORCE CONTROL

When the specified force parameter is null, the arm is passive, i.e. it only moves when actuated by outside
forces.

When the force parameter is positive, everything operates as though an outside force were pushing the arm to
the position ordered: the arm moves on its own, but it can be held back or accelerated by outside action which is
added to the force commanded.

When the force parameter is negative, everything operates as though an outside force were pushing the arm
towards its initial position: to move the arm towards the position commanded, it is thus necessary to apply an
outside force that is greater than the force commanded.

The force parameter is expressed as a percentage of the arm's nominal load. 100% means that the arm applies
a force towards the position commanded, that is equivalent to the nominal load. In rotation, 100% corresponds to
the nominal torque allowed on the arm.

When the arm's speed or acceleration reach the values specified in the movement descriptor, the robot opposes
its full power to resist any attempt to increase its speed or rate of acceleration.

© Stäubli 2010 – D28077104A VAL 3168 / 191

11.1.4. LIMITATIONS

Compliant movements require a specific robot tuning that is not available with all robots (consult your Stäubli
contact).

Compliant movements present the following limitations:

- It is not possible to use blending at the start or the end of a compliant movement: the arm is bound to stop
at the start and end of every compliant movement.

- When a compliant movement is made, the arm may move back to its starting point, but it cannot move
back any further: the arm then stops suddenly at its starting point.

- The force parameter on the arm cannot exceed 1000%. The precision obtained concerning the force
applied is limited by internal friction. It depends mainly on the arm position and the trajectory
commanded.

- Long compliant movements require a lot of internal memory capacity. A runtime error is generated if the
system does not have enough memory to fully process the movement.

11.1.5. INSTRUCTIONS

num movejf(joint jPosition, tool tTool, mdesc mDesc, num nForce)

Function
This instruction records a compliant joint movement command towards the jPosition position using the tTool
tool, the mDesc movement parameters, and a nForce force command. It returns the move id assigned to this
movement, and increases by one the move id for the next move command

The nForce force command is a numerical value representing arm force and cannot exceed ±1000. A value of
100 approximatively matches the weight of the nominal mass of the arm.

A detailed explanation of the various movement parameters is given at the beginning of the section.

A runtime error is generated if mDesc or nForce have invalid values, if jPosition is outside the software limits, if
the previous movement required blending or if a previously recorded movement command cannot be run
(destination out of reach).

See also
num movelf(point pPosition, tool tTool, mdesc mDesc, num nForce)
bool isCompliant()

CAUTION:
The system does not wait for the movement to be completed before proceeding to the
next VAL 3 instruction: several movement commands can be stored in advance. When
the system has used up all its available memory and has no room for another command,
the instruction waits until the new command can be stored.

VAL 3 © Stäubli 2010 – D28077104A 169 / 191

Chapter 11 - Options

num movelf(point pPosition, tool tTool, mdesc mDesc, num nForce)

Function
This instruction records a compliant linear movement command towards the pPosition position using the tTool
tool, the mDesc movement parameters and the nForce force command. It returns the move id assigned to this
movement, and increases by one the move id for the next move command.

The nForce force command is a numerical value representing arm force and cannot exceed ±1000. A value of
100 approximatively matches the weight of the nominal mass of the arm.

A detailed explanation of the various movement parameters is given at the beginning of the section.

A runtime error is generated if mDesc or nForce have invalid values, if pPosition cannot be reached, if
movement towards pPosition is impossible in a straight line, if the previous movement required blending or if a
previously recorded movement command cannot be run (destination out of reach).

See also
num movejf(joint jPosition, tool tTool, mdesc mDesc, num nForce)
bool isCompliant()

bool isCompliant()

Function
This instruction returns true if the robot is in compliant mode, otherwise returns false.

Example
movelf(pPosition, tTool, mDesc, 0)
// Waits for the robot to actually be in compliant mode
wait(isCompliant())
// Commands press ejection
diEjection = true
// Waits for the end of compliant movement
waitEndMove()
// restart with a standard movement
movej(jjDepart, tTool, mDesc)

See also
num movelf(point pPosition, tool tTool, mdesc mDesc, num nForce)
num movejf(joint jPosition, tool tTool, mdesc mDesc, num nForce)

CAUTION:
The system does not wait for the movement to be completed before proceeding to the
next VAL 3 instruction: several movement commands can be stored in advance. When
the system has used up all its available memory and has no room for another command,
the instruction waits until the new command can be stored.

© Stäubli 2010 – D28077104A VAL 3170 / 191

11.2. ALTER: REAL TIME CONTROL ON A PATH

Cartesian Alter

11.2.1. PRINCIPLE

A Cartesian alteration of a path allows apply to the path a geometrical transformation (translation, rotation,
rotation at the tool centre point) that is immediately effective.
This feature makes it possible to modify a nominal path using an external sensor, for, for example, track
accurately the shape of a part, or operate on a moving part.

11.2.2. PROGRAMMING

The programming consists in defining first the nominal path, then, in real time, specifying a deviation to it.
The nominal path is programmed as for standard moves, with the alterMovel(), alterMovej() and alterMovec()
instructions. Several alterable moves may succeed, or some alterable moves may alternate with not alterable
moves. We will define the alterable path as the successive alterable move commands between two not alterable
move commands.

The alteration itself is programmed with the alter() instruction. Different alter modes are possible depending on
the geometrical transformation to apply; the mode is defined with the alterBegin() instruction. The alterEnd()
instruction is finally needed to specify how to terminate the altering, either before the nominal move is completed,
so that the next non alterable move can be sequenced without stop; either after, so that it remains possible to
move the arm with alter while the nominal move is stopped.

The other motion control instructions remains effective in alter mode.

11.2.3. CONSTRAINTS

Synchronisation, desynchronisation: Because the alter command is applied immediately, the change in the
alteration must be controlled so that the resulting arm path remains without discontinuity or noise:

• A large change in the alteration can only be applied gradually with a specific approach control.
• The end of the altering requires a null alteration speed, obtained gradually with a specific stop control.

Synchronous command: The controller sends position and velocity commands every 4 ms to the amplifiers. As a
consequence, the alter command must be synchronized with this communication period so that the alteration
speed remains under control. This is done by using a synchronous VAL 3 task (see Tasks chapter). In the same
way, the sensor input may have to be filtered first if the data is noisy or if its sampling period is not synchronized
with the controller period.

Smooth sequencing: The first non alterable move following an alterable path can be computed only when
alterEnd is executed. As a consequence, if alterEnd is executed too near the end of the alterable move, the arm
may slow down or even stop near this point, until the next move is computed.

Moreover, the ability to compute in advance the next move imposes some restrictions on the altered path after
alterEnd is executed: It must then keep the same configuration, and make sure all joints remain in the same axis
turn. It is then possible that an error is generated during the move that would not occur if alterEnd was not
executed in advance.

CAUTION:
The waitEndMove, open and close instructions wait for the end of the nominal move,
not for the end of altered move. VAL 3 execution may therefore resume after a
waitEndMove even if the arm is still moving because of a changing alteration.

VAL 3 © Stäubli 2010 – D28077104A 171 / 191

Chapter 11 - Options

11.2.4. SAFETY

At any time, the user alteration may be invalid: target out of reach, velocity or acceleration too high. When the
system detects such situations, an error is generated and the arm is stopped suddenly at the last valid position.
The motion needs to be reset to resume operation.

When the arm motion is disabled during a move (hold mode, stop request or emergency stop), a stop is
controlled on the nominal move as for standard moves. After a certain delay, the alter mode is also automatically
disabled to guaranty a complete stop of the arm. When the stop condition disappears, the move may resume and
the alter mode is automatically enabled again.

11.2.5. LIMITATIONS

A null move (when the move target is on start position) is ignored by the system. As a consequence, you need a
not null move to enter the alter mode. A move distance of 0.001 mm is enough for this.

It is not possible to specify the desired configuration for the altered path; the system always uses the same
configuration. It is therefore not possible to change the configuration of the arm within an altered path (even with
the alterMovej instruction).

11.2.6. INSTRUCTIONS

num alterMovej(joint jPosition, tool tTool, mdesc mDesc)

num alterMovej(point pPosition, tool tTool, mdesc mDesc)

Function
This instruction records an alterable joint move command (a line in the joint space). It returns the move id
assigned to this movement, and increases by one the move id for the next move command.

Parameter

Details
This instruction behaves exactly as the movej instruction, except that it enables the alter mode for the move. See
movej for more details.

jPosition/pPosition Point or joint expression defining the end position of the move.

tTool Tool expression defining the tool centre point used during the move
for Cartesian speed control.

mDesc mDesc expression defining the speed control and blending
parameter for the move.

© Stäubli 2010 – D28077104A VAL 3172 / 191

num alterMovel(point pPosition, tool tTool, mdesc mDesc)

Function
This instruction records an alterable linear move command (a line in the Cartesian space). It returns the move id
assigned to this movement, and increases by one the move id for the next move command.

Parameter

Details
This instruction behaves exactly as the movel instruction, except that it enables the alter mode for the move. See
movel for more details.

num alterMovec(point pIntermediate, point pTarget, tool tTool,
mdesc mDesc)

Function
This instruction records an alterable circular move command. It returns the move id assigned to this movement,
and increases by one the move id for the next move command.

Parameter

Details
This instruction behaves exactly as the movec instruction, except that it enables the alter mode for the move. See
movec for more details.

pPosition Point expression defining the end position of the move.

tTool Tool expression defining the tool centre point used during the
move for Cartesian speed control. At the end of the move, the tool
centre point is at the specified target position.

mDesc mdesc expression defining the speed control and blending
parameter for the move.

pIntermediate Point expression defining an intermediate point on the circle

pTarget Point expression defining the end position of the move.

tTool Tool expression defining the tool centre point used during the move
for Cartesian speed control. At the end of the move, the tool centre
point is at the specified target position.

 mDesc mdesc expression defining the speed control and blending
parameter for the move.

VAL 3 © Stäubli 2010 – D28077104A 173 / 191

Chapter 11 - Options

num alterBegin(frame fAlterReference, mdesc mMaxVelocity)

num alterBegin(tool tAlterReference, mdesc mMaxVelocity)

Function
This instruction initializes the alter mode for the alterable path being executed.

Parameter

Details
The alter mode initiated with alterBegin terminates only with an alterEnd command, or a resetMotion. When the
end of an alterable path is reached, the alter mode remains active until alterEnd is executed.

The trsf expression of the alter command defines a transformation of the whole path around alterReference:

• The path is rotated around the centre of the frame or tool using the rotation part of the trsf.
• Then the path is translated by the translation part of the trsf.

The trsf coordinates of the alter command are defined in alterReference base.

When a frame is used as reference, the alterReference is fixed in space (World). This mode must be used when
the deviation of the path is known or measured in the Cartesian space (moving part such as conveyor tracking).

When a tool is used as reference, the alterReference is fixed relatively to the tool center point. This mode must
be used when the deviation of the path is known or measured relatively to the tool center point (for example part
shape sensor mounted on the tool).

The motion descriptor is used to define the maximum joint and Cartesian velocity on the altered path (using the
fields vel, tvel and rvel of the motion descriptor). An error is generated and the arm is stopped on path if the
altered velocity exceeds the specified limits.

The accel and decel fields of the motion descriptor control the stop time when a stop condition occurs (eStop,
hold mode, VAL 3 stopMove()): The path alteration must be stopped using these deceleration parameters (see
alterStopTime).

alterBegin returns a numerical value to indicate the result of the instruction:

See also
num alterEnd()
num alter(trsf trAlteration)
num alterStopTime()

fAlterReference/tAlterReference Frame or tool expression defining the reference for the alter
deviation.

mMaxVelocity mdesc expression defining the safety check parameters for the
alter deviation.

1 alterBegin was successfully executed

0 alterBegin is waiting for the start of the alterable move

-1 alterBegin was ignored because the alter mode has already started

-2 alterBegin is refused (alter option is not enabled)

-3 alterBegin was refused because the motion is in error. A resetMotion is required.

© Stäubli 2010 – D28077104A VAL 3174 / 191

num alterEnd()

Function
This instruction exits the alter mode and make the current move not alterable any more.

Details
If alterEnd is executed when the end of the alterable path is reached, the next not alterable move (if any) is
started immediately.
If alterEnd is executed before the end of the alterable move, the current value of the alter deviation is applied to
the rest of the alterable path, until the first next not alterable move. It is not possible to enter the alter mode again
on the same alterable path.
The next not alterable move, if any, is computed as soon as alterEnd is executed so that the transition between
the alterable path and the next not alterable move is made without stop.

alterEnd returns a numerical value to indicate the result of the instruction:

See also
num alterBegin(frame fAlterReference, mdesc mMaxVelocity)
num alterBegin(tool tAlterReference, mdesc mMaxVelocity)

num alter(trsf trAlteration)

Function
This instruction specifies a new alteration of the alterable path.

Details
The transformation induced by the alteration trsf depends on the alter mode selected by the alterBegin
instruction. The alteration coordinates are defined in the frame or tool specified with the alterBegin instruction.

The alteration is applied by the system every 4 ms: When several alter instructions are executed in less that
4 ms, the last one applies. Most often the alter instruction needs to be executed in a synchronous task to force an
alteration refresh every 4 ms.

The alteration must be computed carefully so that the resulting arm position and speed commands remain
continuous and without noise. A sensor input may need to be filtered adequately to reach the desired quality on
the arm path and behaviour.

When the motion is stopped (hold mode, emergency stop, stopMove() instruction), the alteration of the path is
locked until all stop conditions are cleared.

When the alteration of the path is invalid (unreachable position, out of speed limits), the arm will stop suddenly at
the last valid position and the alter mode is locked in error. A resetMotion is required to resume operation. The
velocity limits for the alter move are defined by the alterBegin instruction.

1 alterEnd was successfully executed

-1 alterEnd was ignored because the alter mode has not yet started

-3 alterEnd was refused because the motion is in error. A resetMotion is required.

VAL 3 © Stäubli 2010 – D28077104A 175 / 191

Chapter 11 - Options

Alter returns a numerical value to indicate the result of the instruction:

See also
num alterBegin(frame fAlterReference, mdesc mMaxVelocity)
num alterBegin(tool tAlterReference, mdesc mMaxVelocity)
void taskCreateSync string sName, num nPeriod, bool& bOverrun, program(...)

num alterStopTime()

Function
This instruction returns the remaining time before the alter deviation is locked, when a stop condition occurs.

Details
When a stop condition occurs, the system evaluates the time to stop the arm if the accel and decel parameters of
the motion descriptor specified with alterBegin are used. The minimum of this time and the time imposed by the
system (typically 0.5s when a eStop occurs) is returned by alterStopTime.

When alterStopTime returns a negative value, there is no pending stop condition. When alterStopTime returns
null, the alter command is locked until all stop conditions are reset.

alterStopTime returns null when the alter mode is not enabled.

See also
num alterBegin(frame fAlterReference, mdesc mMaxVelocity)
num alterBegin(tool tAlterReference, mdesc mMaxVelocity)
num alter(trsf trAlteration)

1 alter was successfully executed.

0 alter is waiting for the motion to restart (alterStopTime is null).

-1 alter was ignored because the alter mode is not started or already ended.

-2 alter is refused (alter option is not enabled).

-3 alter was refused because the motion is in error. A resetMotion is required.

© Stäubli 2010 – D28077104A VAL 3176 / 191

11.3. OEM LICENCE CONTROL

11.3.1. PRINCIPLES

An OEM licence is a controller-specific key that makes it possible to restrict the use of a VAL 3 project on some
selected robot controllers.

A tool is provided with Stäubli Robotics Suite() to encode a secret OEM password into a public, controller
specific, OEM licence, that can then be installed as a software option on the controller. By using the getLicence()
instruction, a project or library can test if the OEM licence is installed and therefore make sure that it is used only
by the selected robot controllers.

To keep the OEM password secret and protect the code where the licence is tested, the getLicence() instruction
must be used in an encrypted library.

Demonstration mode of OEM licences is supported; in that case, the controller is simply configured with the
"demo" key, and the getLicence() instruction notifies it to the caller. With the VAL 3 emulator, the "demo" key is
enough to fully enable the OEM licence.

The getLicence() instruction is a VAL 3 option and requires the installation of a runtime licence on the
controller. If this runtime licence is not defined, getLicence() returns an error code.

() This tool, a encrypttools.exe executable, requires a specific Stäubli Robotics Suite licence to be used.

11.3.2. INSTRUCTIONS

string getLicence(string sOemLicenceName, string sOemPassword)

Function
This instruction returns the status of the specified OEM licence:

See also
Encryption

"oemLicenceDisabled" The VAL 3 runtime licence "oemLicence" is not enabled on the
controller: the OEM licence cannot be tested.

"" The OEM licence sOemLicenceName is not enabled (undefined,
or invalid password).

"demo" The OEM licence sOemLicenceName is enabled in demonstration
mode.

"enabled" The OEM licence sOemLicenceName is enabled.

VAL 3 © Stäubli 2010 – D28077104A 177 / 191

Chapter 11 - Options

11.4. ABSOLUTE ROBOT

11.4.1. PRINCIPLE

An 'absolute robot' is a robot using an arm-specific identification of the geometrical parameters (often known as
'DH parameters'). These parameters are specific for each robot and correspond to the real orientation and
dimensions of each joint. An absolute robot has an increased accuracy to reach Cartesian positions specified by
a CAD tool or computed in VAL 3 (such as positions in a pallet). Cartesian curves (long lines, circles) are also more
accurate. Absolute calibration does not change the repeatability of the arm.

The DH parameters consists in a set of translations (a, b and d along axes X, Y, Z,) and rotations (alpha, beta,
theta around axes X, Y and Z)

The sequence of these translations and rotations is defined so that the joint position {j1, j2, j3, j4, j5, j6} matches
the Cartesian position pCart at flange center point with:

pCart.trsf = {0,0,0,0,0, j1+theta[0]}
* {a[0], b[0], d[0], alpha[0], beta[0], j2+theta[1]}
* {a[1], b[1], d[1], alpha[1], beta[1], j3+theta[2]}
* {a[2], b[2], d[2], alpha[2], beta[2], j4+theta[3]}
* {a[3], b[3], d[3], alpha[3], beta[3], j5+theta[4]}
* {a[4], b[4], d[4], alpha[4], beta[4], j6+theta[5]}
* {a[5], b[5], d[5], alpha[5], beta[5], 0}
* {0, 0, d[6], 0, 0, 0}

The d[6] parameter is required only for specific arm wrists.

11.4.2. OPERATION

The geometrical parameters must be identified using a separate measurement tool (such as laser tracker). The
VAL 3 language does not offer tools to support this measurement operation, but it gives a mean to apply the
measured geometrical parameters to the robot with immediate effect. The parameters are also saved in the arm
configuration file, so that they are automatically recovered with the next reboot.

The geometrical parameters can be changed in a running VAL 3 application. This makes it possible to adjust the
geometry of the arm during the production cycle if the robot cell includes an adequate measurement tool.

11.4.3. LIMITATIONS

It is possible to change the geometrical parameters in a running VAL 3 application only when the motion generator
is empty (no pending move).

The modified geometry of an absolute robot has more complex mathematical properties than a standard
geometry. The notion of arm configuration (configuration type) cannot be made rigorous any more. The conversion
of a Cartesian position into a corresponding joint position may fail near joint limits or singular positions.

© Stäubli 2010 – D28077104A VAL 3178 / 191

11.4.4. INSTRUCTIONS

void getDH (num& theta[], num& d[], num& a[], num& alpha[],
num& beta[])

void getDefaultDH(num& theta[], num& d[], num& a[], num& alpha[],
num& beta[])

Function
These instructions return in the specified arrays the DH parameters of the arm. Parameters d and a are
translations in mm; parameters theta, alpha and beta are angles in degrees. getDH() return the current DH
parameters of the arm attached to the controller. getDefaultDH() returns the standard DH parameters for the arm
type.

See also
bool setDH(num& theta[], num& d[], num& a[],num& b[], num& alpha[], num& beta[])

bool setDH(num& theta[], num& d[], num& a[],num& b[], num& alpha[],
num& beta[])

Function
This instruction is enabled only with the a specific runtime license. It modifies the arm geometry with DH
parameters. Parameters d, a and b are translations in mm ; parameters theta, alpha and beta are angles in
degree. The change is immediate, and is also applied to the arm configuration file so that the modified geometry
is effective with the next reboot.

The instruction returns true if the change is successfully applied, false if the new geometry is not applied because
it differs too much from the standard geometry parameters. setDH() waits for the motion to be empty to perform
its operation.

The size of DH arrays must match the number of robot axes. An additional entry in the d array may be required to
modify the flange dimension: when it is missing, setDH() returns false and a diagnostic message is sent to the
logger.

See also
void getDH (num& theta[], num& d[], num& a[], num& alpha[], num& beta[])
void getDefaultDH(num& theta[], num& d[], num& a[], num& alpha[], num& beta[])

VAL 3 © Stäubli 2010 – D28077104A 179 / 191

Chapter 11 - Options

11.5. CONTINUOUS AXIS

11.5.1. PRINCIPLE

The axis 6 (for RX/TX arms) or axis 4 (for RS/TS arms) can be 'continuous' in a robotics application when only its
position within one turn matters: the number of turns it has performed during the cycle has no importance. This
applies for example to applications where the robot is holding a part that is processed by a fixed tool.

The continuousAxis option makes it possible to automatically reset the number of turns performed in the previous
cycle before a new cycle is started. For example, if the axis starts the application cycle at position 0° and ends at
position 720° (2 turns), the next cycle can reset instantaneously the position to 0° and start a new cycle, without
having to move the axis back from 720° to 0°.

11.5.2. INSTRUCTIONS

joint resetTurn(joint jReference)

Function
This instruction performs like the standard resetMotion() instruction, waits for the arm to be stopped, and adjusts
the position of the continuous axis so that it becomes as close as possible to the specified reference position. It
returns the effective arm position after execution of the instruction. The adjustment operation is done with arm
power enabled or not, and takes roughly 50 ms. The resetTurn() instruction changes the calibration data of the
arm. With the next controller reboot, the axis zero position is automatically reinitialized (update of the arm specific
data in the arm and on the controller disk).

See also
void resetMotion(), void resetMotion(joint jStartingPoint)

© Stäubli 2010 – D28077104A VAL 3180 / 191

VAL 3 © Stäubli 2010 – D28077104A 181 / 191

Chapter 12 - Appendix

CHAPTER 12

APPENDIX

© Stäubli 2010 – D28077104A VAL 3182 / 191

VAL 3 © Stäubli 2010 – D28077104A 183 / 191

Chapter 12 - Appendix

12.1. RUNTIME ERROR CODES

Code Description
-1 There is no task created by this application or library with the specified name
0 The task is suspended without runtime error (taskSuspend() instruction or debug mode)
1 The specified task is running

10 Invalid numerical calculation (division by zero).
11 Invalid numerical calculation (e.g.ln(-1))
20 Access to an array with an index that is larger than the array size.
21 Access to an array with a negative index.
29 Invalid task name. See taskCreate() instruction.
30 The specified name does not correspond to any VAL 3 task.
31 A task with the same name already exists. See taskCreate instruction.
32 Only 2 different periods for synchronous tasks are supported. Change scheduling period.
40 Not enough memory space available.
41 Not enough memory space to run the task. See the run memory size.
60 Maximum instruction run time exceeded.
61 Internal VAL 3 interpreter error
70 Invalid instruction parameter. See the corresponding instruction.
80 Uses data or a program from a library not loaded in the memory.
81 Incompatible kinematic: Use of a point/joint/config that is not compatible with the arm kinematic.

82 The reference frame or tool of a variable belongs to a library and is not accessible from the variable's
scope (library not declared in the variable's project, or reference variable is private).

90 The task cannot resume from the location specified. See taskResume() instruction.
100 The speed specified in the motion descriptor is invalid (negative or too great).
101 The acceleration specified in the motion descriptor is invalid (negative or too great).
102 The deceleration specified in the motion descriptor is invalid (negative or too great).
103 The translation velocity specified in the motion descriptor is invalid (negative or too great).
104 The rotation velocity specified in the motion descriptor is invalid (negative or too great).
105 The reach parameter specified in the movement descriptor is invalid (negative).
106 The leave parameter specified in the movement descriptor is invalid (negative).
122 Attempt to write in a system input.
123 Use of a dio, aio or sio input/output not connected to a system input/output.
124 Attempt to access a protected system input/output
125 Read or write error on a dio, aio or sio (field bus error)

150 Cannot run this movement instruction: a previous movement request could not be completed (point out
of reach, singularity, configuration problem, etc.)

153 Movement command not supported
154 Invalid movement instruction: check the movement descriptor.
160 Invalid flange tool coordinates
161 Invalid world tool coordinates
162 Use of a point without a reference frame. See Definition.
163 Use of a frame without a reference frame. See Definition.
164 Use of a tool without reference tool. See Definition.
165 Invalid frame or reference tool (global variable linked to a local variable)
250 No runtime licence for this instruction, or demo licence is over.

© Stäubli 2010 – D28077104A VAL 3184 / 191

12.2. CONTROL PANEL KEYBOARD KEY CODES

Menus (with or without Shift):

For standard keys, the code returned is the ASCII code of the corresponding character:

Without Shift With Shift
3 Caps Space 3 Caps Space

283 - 32 Move 283 - 32 Move

Ret.
-

Ret.
-

2 Shift Esc Help Run 2 Shift Esc Help Run

282 - 255 - 270 - 282 - 255 - 270 -

Menu Tab Up Bksp Stop Menu UnTab PgUp Bksp Stop

- 259 261 263 - - 260 262 263 -

1 User Left Down Right 1 User Home PgDn End

281 - 264 266 268 281 - 265 267 269

F1 F2 F3 F4 F5 F6 F7 F8
271 272 273 274 275 276 277 278

Without Shift
q w e r t y u i o p

113 119 101 114 116 121 117 105 111 112
a s d f g h j k l <
97 115 100 102 103 104 106 107 108 60
z x c v b n m . , =

122 120 99 118 98 110 109 46 44 61

With Shift
7 8 9 + * ; () []

55 56 57 43 42 59 40 41 91 93
4 5 6 - / ? : ! { }

52 53 54 45 47 63 58 33 123 125
1 2 3 0 " % - . , >

49 50 51 48 34 37 95 46 44 62

With double Shift
Q W E R T Y U I O P
81 87 69 82 84 89 85 73 79 80
A S D F G H J K L }
65 83 68 70 71 72 74 75 76 125
Z X C V B N M $ \ =
90 88 67 86 66 78 77 36 92 61

VAL 3 © Stäubli 2010 – D28077104A 185 / 191

Ambiguity as to the intermediate orientation 149
Blended cycle 146
Blended cycle 153
Circular movement 144
Configuration change: righty / lefty 150
Configuration: enegative 138
Configuration: epositive 138
Configuration: lefty 137
Configuration: lefty 140
Configuration: righty 137
Configuration: righty 140
Configuration: wnegative 139
Configuration: wpositive 139
Constant orientation as compared with the trajectory 148
Constant orientation in absolute terms 148
Cycle type: U 144
Cycle without blending at a given point 146
Definition of the distances: ’leave’ / ’reach’ 145
Elbow configuration change impossible 151
Frame rotation about the axis: X 120
Frame rotation about the axis: Y’ 121
Frame rotation about the axis: Z’’ 121
Full circle 149
Initial and final positions 143
Links between reference frames 125
Links between tools 128
Organization chart: frame / point / tool / trsf 115
Orientation 120
Point definition 131
Positive/negative elbow configuration change 150
Positive/negative wrist configuration change 151
Sequencing 82
Shoulder configuration change possible 152
Straight line movement 143
Two configurations that can be used to reach a given point: P 135
User page 69

© Stäubli 2010 – D28077104A VAL 3186 / 191

VAL 3 © Stäubli 2010 – D28077104A 187 / 191

A
abs (Instruction) 45, 116
accel 156
acos (Instruction) 44
aio 26, 62
aioGet (Instruction) 62
aioLink (Instruction) 62
aioSet (Instruction) 62, 63
alter (Instruction) 174
alterBegin (Instruction) 173
alterEnd (Instruction) 174
alterMovec (Instruction) 172
alterMovej (Instruction) 171
alterMovel (Instruction) 172
alterStopTime (Instruction) 175
append (Instruction) 33
appro (Instruction) 133
asc (Instruction) 56
asin (Instruction) 44
atan (Instruction) 45
autoConnectMove 147
autoConnectMove (Instruction) 162
B
bAnd (Instruction) 49
blend 145, 156
bNot (Instruction) 49
bool 26
bOr (Instruction) 50
bXor (Instruction) 50
C
call 20
call (Instruction) 20
chr (Instruction) 55
clearBuffer (Instruction) 65
clock (Instruction) 92
close 82
close (Instruction) 130
cls (Instruction) 70
codeAscii 55
compose (Instruction) 132
config 26, 115, 135
config (Instruction) 140
cos (Instruction) 44
D
decel 156
delay 82
delay (Instruction) 91
delete (Instruction) 31, 57
dio 26, 58
dioGet (Instruction) 59
dioLink (Instruction) 59

© Stäubli 2010 – D28077104A VAL 3188 / 191

dioSet (Instruction) 60
disablePower (Instruction) 107
distance (Instruction) 122, 132
do ... until (Instruction) 22
E
elbow 135
enablePower (Instruction) 107
enegative 138
epositive 138
esStatus (Instruction) 109
exp (Instruction) 45
F
find (Instruction) 57
first (Instruction) 34
for (Instruction) 23
frame 26, 115
fromBinary (Instruction) 51
G
get 82
get (Instruction) 72
getData (Instruction) 31
getDate 77
getDefaultDH (Instruction) 178
getDH (Instruction) 178
getDisplayLen (Instruction) 71
getJointForce (Instruction) 163
getKey (Instruction) 74
getLanguage (Instruction) 76
getLatch (Instruction) 118
getLicence (Instruction) 176
getMonitorSpeed (Instruction) 110
getMoveld (Instruction) 163
getPosition (Instruction) 163
getProfile (Instruction) 75
getSpeed (Instruction) 163
getVersion (Instruction) 111
globale 28
gotoxy (Instruction) 70
H
help (Instruction) 87
here (Instruction) 133
herej (Instruction) 117
I
if (Instruction) 21
insert (Instruction) 30, 57
interpolateC (Instruction) 124
interpolateL (Instruction) 123
ioBusStatus (Instruction) 109
ioStatus (Instruction) 60, 61, 63
isCalibrated (Instruction) 108
isCompliant 167

VAL 3 © Stäubli 2010 – D28077104A 189 / 191

isCompliant (Instruction) 169
isDefined (Instruction) 29
isEmpty (Instruction) 162
isInRange (Instruction) 117
isKeyPressed (Instruction) 74
isPowered (Instruction) 107
isSettled (Instruction) 162
J
joint 26
jointToPoint (Instruction) 133
L
last (Instruction) 34
leave 145, 156
left (Instruction) 56
lefty 137, 140
len (Instruction) 57
libDelete (Instruction) 99
libList (Instruction) 100
libLoad 98
libLoad (Instruction) 99
libPath (Instruction) 100
libSave (Instruction) 99
limit (Instruction) 48
link (Instruction) 127, 130
ln (Instruction) 46
locale 28
log (Instruction) 46
logMsg (Instruction) 75
M
max (Instruction) 48
mdesc 26, 143, 156
mid (Instruction) 56
min (Instruction) 48
movec (Instruction) 159
movej 143
movej (Instruction) 157
movejf 167
movejf (Instruction) 168
movel 143
movel (Instruction) 158
movelf 167
movelf (Instruction) 169
N
next (Instruction) 34
num 26, 56
O
open 82
open (Instruction) 129
P
point 26
pointToJoint (Instruction) 134

© Stäubli 2010 – D28077104A VAL 3190 / 191

popUpMsg (Instruction) 74
position (Instruction) 127, 130, 134
power (Instruction) 45
prev (Instruction) 34
put (Instruction) 72
putln (foncion) 72
R
reach 145, 156
replace (Instruction) 57
resetMotion 147, 160, 167
resetMotion (Instruction) 160
resetTurn (Instruction) 179
resize (Instruction) 33
restartMove 160, 167
restartMove (Instruction) 161
return (Instruction) 20
right (Instruction) 56
righty 137, 140
round (Instruction) 46
roundDown (Instruction) 46
roundUp (Instruction) 46
RUNNING 91
rvel 156
S
safetyFault (Instruction) 109
sel (Instruction) 48
setDH (Instruction) 178
setFrame (Instruction) 127
setLanguage (Instruction) 77
setLatch (Instruction) 118
setMonitorSpeed (Instruction) 110
setMoveld (Instruction) 164
setMutex (Instruction) 87
setProfile (Instruction) 75
setTextMode (Instruction) 70
shoulder 135
sin (Instruction) 44
sio 26, 64
SioCtrl (Instruction) 66
sioGet (Instruction) 65
sioLink (Instruction) 65
sioSet (Instruction) 65
size (Instruction) 29, 33
sqrt (Instruction) 45
stopMove 167
stopMove (Instruction) 160
STOPPED 86
string 26
switch (Instruction) 21, 24
T
tan (Instruction) 44

VAL 3 © Stäubli 2010 – D28077104A 191 / 191

taskCreate (Instruction) 89
taskCreateSync (Instruction) 90
taskKill (Instruction) 87
taskResume 81
taskResume (Instruction) 86
taskStatus 81
taskStatus (Instruction) 88
taskSuspend (Instruction) 86
title (Instruction) 72
toBinary (Instruction) 51
toNum (Instruction) 54
tool 26, 115
toString (Instruction) 53
trsf 26, 115
trsf align (Instruction) 124
tvel 156
U
userPage (Instruction) 70
V
vel 156
W
wait 82
wait (Instruction) 91
waitEndMove 82, 146, 167
waitEndMove (Instruction) 161
watch 82
watch (Instruction) 92
while (Instruction) 22
wnegative 139
workingMode (Instruction) 108
wpositive 139
wrist 135

	Introduction
	VAL 3 language elements
	Simple types
	User interface
	Tasks
	Starting and stopping the application

	Libraries
	User type
	Robot control
	Arm positions
	Movement control
	Options
	Cartesian Alter
	Function
	Parameter
	Details
	Function
	Parameter
	Details
	Function
	Parameter
	Details
	Function
	Parameter
	Details
	Details
	Details
	Details

	Appendix

